See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/310716759

# A Synopsis of the Preliminary Forest Inventory Survey of Mahausakande Regenerating Rain Forest...

#### Technical Report · July 2015

DOI: 10.13140/RG.2.2.20861.36325

| citations<br>0 | 5                                                                                          | READS<br>25 |
|----------------|--------------------------------------------------------------------------------------------|-------------|
| 1 author       | :                                                                                          |             |
|                | Asanga S T B Wijetunga<br>Rajarata University of Sri Lanka<br>16 PUBLICATIONS 40 CITATIONS |             |
|                | SEE PROFILE                                                                                |             |

Some of the authors of this publication are also working on these related projects:

Project

Seed dormancy of Native Sri Lankan Species View project



Forest Regeneration View project

All content following this page was uploaded by Asanga S T B Wijetunga on 23 November 2016.

# A Synopsis of the Preliminary Forest Inventory Survey of Mahausakande Regenerating Rain Forest Stand (MKFS) in Kiriella, Ratnapura, Sri Lanka



Dr W.M.G. Asanga S.T.B. Wijetunga

Department of Biological Sciences Faculty of Applied Sciences Rajarata University of Sri Lanka Mihintale – 50300 Sri Lanka

July 2015

# FOREWORD

The 20th Century witnessed the denudation of vast tracts of forests and its replacement with income generating agricultural pursuits which included tea and rubber. Landslides and recurrent floods were experienced as a result of this massive destruction and interference with nature. It was at the beginning of the 21st Century that a handful of environmentalists led by the late Mr Lyn De Alwis began to discuss the importance of regenerating the tropical rain forests of the island. As a result of these discussions, Mr Tom Ellawala made available a block of land which belonged to him, located in the Sinharaja belt, for the group to experiment with the concept. Accordingly, the Ellawala Foundation Trust was set up in 2005, and the land made available to the Trust to carry out the work of re-forestation. A project plan was designed and Dr Channa Bambaradeniya offered his honorary services to the project. Within 3 years the basic infrastructural needs of the project had been met with funds being made available by the Ellawala Foundation Trust, when the HSBC joined the group to facilitate a truly scientific exercise.

Almost 10 years later, the Trust engaged Dr Asanga Wijetunga to prepare an Inventory of the entire flora at the site and to include the following:

- A comprehensive Forest Inventory of the Mahausakanda Regenerating Rain Forest Stand (MKFS).
- A Reference Herbarium for the existing flora of MKFS.
- A Report on the Inventory and the Reference Herbarium of MKFS.

Additionally, some floristic data obtained during the survey would facilitate estimation of the carbon stocks (or the extent of carbon sequestration) of the MKFS and hence, would be precious in the potential carbon trading/carbon credits in the future and to contribute ongoing REDD+ programme with the support of the Forest Department.

This Report is published by Ellawala Horticulture (Pvt) Ltd with the expectation that it will stimulate other land owners in the island to set apart similar blocks of land to help mitigate the harmful impact of large-scale deforestation.

For a detailed description of Mahausakande please visit: www.mahausakande.org

Nalini Ellawala

(Trustee of the EFT and Coordinator of the Mahausakande Project)

#### ABSTRACT

#### THE PRELIMINARY FOREST INVENTORY SURVEY OF MAHAUSAKANDE REGENERATING RAIN FOREST STAND (MKFS) IN KIRIELLA, RATNAPURA, SRI LANKA

#### W.M.G. Asanga S.T.B. Wijetunga

Department of Biological Sciences, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale – 50300, Sri Lanka

The systematic collection of data and forest information for assessment or analysis is known as Forest Inventory. Mahausakande Regenerating Rain Forest Stand (MKFS) is located in the village of Hindurangala, in the electorate of Kiriella, Ratnapura District, Sabaragamuwa Province of Sri Lanka. Preliminary Forest Inventory Survey of MKFS was conducted from August 2013 to April 2014 and the Forest Inventory was completed in June 2015. Fifty three thousand two hundred and fifty four (53,254) individuals of woody perennial trees, shrubs and or lianas (woody climbers) were recorded from MKFS, with floristic richness of 62 plant families, 155 plant genera and 207 species of plants. The structure and composition of the MKFS, its regenerating process and sustainable management and conservation are at a satisfactory state. However, necessary precautions must be implemented to protect the flora and fauna of the system, physical environment of the system and also to get more ecological services and socioeconomic benefits from the system. Experiences gained during this Preliminary Forest Inventory Survey of Mahausakande Regenerating Rain Forest Stand would definitely be beneficial to conduct the second successive survey, recommended to commence in the year 2024.

Key words: Forest Inventory, Mahausakande, Ratnapura, Regenerating

### **1** Introduction

#### **1.1 Forest Inventory**

The systematic collection of data and forest information for assessment or analysis is known as 'forest inventory'. Plant species, diameter at breast height (DBH) and height of trees, site quality, age of stands, defects are considered as important things to measure, enumerate and note when taking forest inventory. The number of trees per hectare, the basal area, the volume of trees in an area, and the value of the timber can be calculated from the data collected during a survey. An estimate of the value and possible uses of timber is an important part of the broader information required to sustain ecosystems. Inventories can be done for other reasons than just calculating the value. The results of this type of inventory can be used in preventative actions and also awareness. Wildlife surveys also can be undertaken in conjunction with timber inventory to determine the number and type of wildlife within a forest. The aim of the statistical forest inventory is to provide comprehensive information about the state and dynamics of forests for strategic and management planning (Henning & Mercker 2009).

#### 1.2 Mahausakande Regenerating Rain Forest Stand (MKFS)

Mahausakande Regenerating Rain Forest Stand (MKFS) is located in the village of Hindurangala, adjacent to Galpurana settlement in the electorate of Kiriella, Ratnapura District, Sabaragamuwa Province of Sri Lanka (6°76'68.9"N-80°25'38.4"E). A block of 40 acres (c.a. 16 ha) had been replanted with rubber in 1960s. For replanting of rubber, a patch of Tropical Wet Evergreen Forest, the climatic climax forest type of the area at that time had probably been cleared. With the passing of the Land Reform Bill in 1970, the original owners handed over this property to the Land Reform Commission as excess land and from then onwards the rubber estate was abandoned and allowed to go into natural regeneration, to a forest (Ellawala 2012).

In late 1980s, Land Reform Commission decided to allocate this block of land to the Ellawala family and presently this block is maintained under the guidance and supervision of the Ellawala Foundation Trust as a regenerating (deliberate and natural) forest stand, in a succession process. Deliberate introduction of indigenous plant species into Mahausakande has been commenced in 2005 and the rubber plantation was already in a degenerated state since c.a. 2000 (Ellawala 2012).

#### 1.3 A Brief Review of Literature on Regenerating Rain Forest Stand

Four systematic studies have been done on the flora and fauna of Mahausakande Tropical Rainforest Regeneration Initiative in the year 2012. One study is on diversity of herpetofauna of Mahausakande (Wickramasinghe *et al.* 2012), and another study on valuation of ecosystem services and options for sustainable financing of Mahausakande (Ranasinghe & Bambaradeniya 2012). Third study is an assessment of forest regeneration in Mahausakande, which was done by Fernando, Ekanayake & Bambaradeniya (2012) and the fourth study is a baseline assessment of sequestered standing carbon in Mahausakande by Ekanayake, Fernando & Bambaradeniya (2012). In addition to the above publications, there are some other technical reports, lists of flora and fauna, booklets, pamphlets, brochures, flyers and handouts on flora and fauna, and ecological and socioeconomic (community) services of Mahausakande, prepared by Ellawala Foundation Trust. However, the book titled *Enjoying Freedom, the Story of Mahausakande* by Ellawala (2012) gives an ample amount of information on MKFS and its services.

However, it had been identified that the complete systematic documentation of floristic component of this forest stand is a timely need. Hence, the present study, the *Preliminary Forest Inventory Survey of Mahausakande Regenerating Rain Forest Stand* was initiated in the year 2013.

# 1.4 Objectives of the Study

Overall objective of the study was to document floristic component, i.e., to prepare an Inventory for the Mahausakande Forest Stand (MKFS) with the following specific objectives.

#### **Specific Objectives:**

- To survey the entire forest stand (16 ha) for its tree and shrub (woody perennial plants) component, i.e., in qualitative and quantitative means.
- To survey the saplings of the woody perennials and herbaceous community in representative manner.
- To prepare herbarium vouchers of the plant species existing in the forest stand and to establish a reference/working herbarium.
- To assess the present condition of the forest and to predict the future trends
- To make recommendations to improve the quality of the stand and to propose remedies to mitigate the risks and threats, if any.

# **1.5** Expected Outcome of the Survey

- 1. Forest Inventory of Mahausakande Regenerating Rain Forest Stand (MKFS).
- 2. Reference Herbarium for the existing flora of MKFS.
- 3. Report on the Inventory and the Reference Herbarium of MKFS.
- 4. In addition to the three main direct outcomes; some floristic data obtained during the survey would facilitate the estimation of the carbon stocks (or to get an idea on the carbon sequestration) of the MKFS and hence, would be precious in the potential carbon trading/carbon credits in the future and contribute to ongoing REDD+ programme (Appendix 6.1).

## 2 Methodology

Forty (40) acres, i.e., 16.188 ha (16 ha approximately) of the MKFS were divided into 400 hypothetical blocks of 400 m<sup>2</sup> (20 m x 20 m quadrats/plots) in order to survey the woody perennial component of the flora (Note: 1 ha = 10,000 m<sup>2</sup>, 1 ha = 2.471 acre and 1 acre = 0.4047 ha) keeping the available map of MKFS as a reference. This demarcation was considered as an estimated mean. Flexibility was maintained throughout the survey to adjust the shape and the size of the plot in some unavoidable circumstances, such as at the edges of the forest, the boundary and uneven terrain; and was determined accordingly.

Two groups of surveyors were appointed to carry out the inventory survey. Each group was comprised of a leader (one of two permanent field assistants of the MKFS) and two temporary field assistants selected from the peripheral community. The two survey teams were trained by the scientist appointed to the project with necessary instructions (with lectures and practical component) on residential basis before the commencement of the survey with continuous guidance and supervision throughout the survey.

Each group was assigned one block of 400 m<sup>2</sup> (20 m x 20 m quadrat/plot) per day to complete survey at the initial stage. Two such plots to be surveyed per day by two groups and initially planned to complete 400 blocks within 200 days: i.e., to complete the survey within 10 months (20 working days per month and therefore, 10 months to complete). The number of plots per day was increased gradually after proper training and according to the vegetation density of the sites and managed to complete the entire survey within eight months, from August 2013 to April 2014 (Plate 01 and Plate 02; Appendix – 6.2.1 and 6.2.2).

Each and every plant with a circumference of 3cm (i.e. 1 cm DBH, thickness of an ordinary pencil) and height equal or above 1.5 m was considered for the inventory survey. Circumference was measured using a sewing tape, and height of selected individuals was estimated using calibrated pole. Due to the lack of DBH tape, the circumferences of trees were measured instead of DBH and the DBHs were calculated using the standard formula  $C=2\pi r$ ; where C = circumference,  $\pi = 22/7$  and r = radius.

Individuals were identified at the site (on site basis) and/or a samples were collected, tagged/labeled and herbarium vouchers were prepared to be identified using expert knowledge or comparing with authentic samples in National Herbarium, Peradeniya.

Two, 1 m x 1 m quadrats form each large plot (20 m x 20 m) were surveyed for saplings of woody perennials and herbaceous component of the flora. Individuals were identified at site and/or samples were collected, tagged/labeled and herbarium vouchers were prepared for further identification and confirmation.

Data entry and the preparation of herbarium vouchers were done parallel to the survey on a weekly basis. Including the 10 months of field survey, the entire project was planned to complete within one year duration.

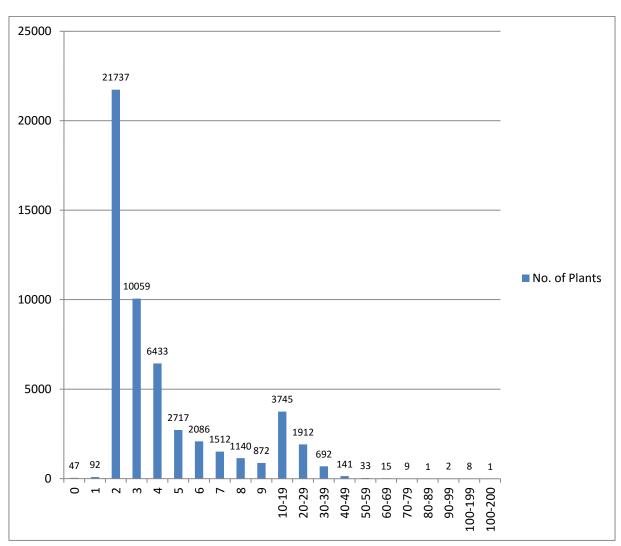
The inventory survey was initiated on August 2013 and completed by April 2014. Initial data entry was completed by July 2014. Data merging, editing, checking and analyzing was completed in early June 2015.

#### **3** Results and Discussion

Fifty three thousand two hundred and fifty four (53,254) individuals of woody perennial trees, shrubs and or lianas (woody climbers) were recorded from Mahausakande Regenerating Rain Forest Stand (MKFS) in Kiriella, Ratnapura, Sri Lanka during its preliminary survey and all of them were tagged. Out of 53,254 individuals 53,207 were within the criterion stipulated at the beginning of the survey, above 2.0 cm girth (circumference), i.e. above 1.0 cm (0.64 cm) diameter at breast height (DBH). Only 47 individuals were below 2.0 cm girth, i.e. below 0.64 cm DBH, the pencil thickness (Table 01 and Chart 01). This has happened accidentally. However, they were also included in the inventory.

| DBH Class<br>No. | DBH Class<br>(cm) | Number of<br>Individuals | DBH Class<br>No. | DBH Class<br>(cm) | Number of<br>Individuals |
|------------------|-------------------|--------------------------|------------------|-------------------|--------------------------|
| 1                | < 1.0             | 47                       | 12               | 20-29             | 1912                     |
| 2                | 1.0 - 1.9         | 92                       | 13               | 30-39             | 692                      |
| 3                | 2.0 - 2.9         | 21737                    | 14               | 40-49             | 141                      |
| 4                | 3.0 - 3.9         | 10059                    | 15               | 50-59             | 33                       |
| 5                | 4.0 - 4.9         | 6433                     | 16               | 60-69             | 15                       |
| 6                | 5.0 - 5.9         | 2717                     | 17               | 70-79             | 9                        |
| 7                | 6.0 - 6.9         | 2086                     | 18               | 80-89             | 1                        |
| 8                | 7.0 - 7.9         | 1512                     | 19               | 90-99             | 2                        |
| 9                | 8.0 - 8.9         | 1140                     | 20               | 100-199           | 8                        |
| 10               | 9.0 - 9.9         | 872                      | 21               | 100-200           | 1                        |
| 11               | 10-19             | 3745                     | 22               | Total             | 53,254                   |

Table 01: Distribution of Individuals among Different DBH Classes.


Out of 53,254 woody perennials, 46,695 (87.68%) were below 10.0 cm DBH and the rest 6,559 (12.32%) were only equal or above 10.0 cm DBH. Forty six thousand six hundred and ninety five (46,695) individuals could be further categorized into two lumped classes of DBH as 0-5 cm (i.e. 0.0 - 4.9) and 5-10 cm (5.0 - 9.9) to show the distribution of individuals below 10 cm DBH in only two separate clusters. Accordingly 38,368 individuals were with DBH of equal or less than 5.0 cm and the rest 8,327 were within DBH of more than 5.0 cm and less than 10.0 cm, i.e. 72.05% and 15.63% of the total population respectively. Therefore, only 27.95% of the

community has reached up to tree level and the rest (72.05%) were either tree-lets, saplings of large trees or pioneer shrubs of the succession, the regenerating system. Pioneers are 17.63% of *Clerodendrum infortunatum* [Pinna (S)], 15.87% of *Symplocos cochinchinensis* [Bombu (S)], 5.43% of *Syzygium caryophyllatum* [Dan (S)] and 1.87% of *Melastoma malabathricum* [Mahabowitiya (S)] etc. Some exotics (introduced) were also with higher percentages such as *Hevea brasiliensis*, *Gliricidia sepium*, and *Alstonia macrophylla*. Some climatic climax indigenous species such as *Cleistocalyx nervosum*, *Carallia brachiata*, *Litsea longifolia*, *Cinnamomum verum* and *Artocarpus nobilis* were also among the higher percentage species (Table 02).

| No. | Plant Name<br>(Species or Genus) | Family          | Vernacular Name<br>(Sinhala) | No. of Ind. | %     |
|-----|----------------------------------|-----------------|------------------------------|-------------|-------|
| 1   | Clerodendrum infortunatum        | Lamiaceae       | Pinna                        | 9391        | 17.63 |
| 2   | Symplocos cochinchinensis        | Symplocaceae    | Bombu                        | 8451        | 15.87 |
| 3   | Cleistocalyx nervosum            | Myrtaceae       | Batadomba                    | 2912        | 5.47  |
| 4   | Syzygium caryophyllatum          | Myrtaceae       | Dan                          | 2893        | 5.43  |
| 5   | Hevea brasiliensis               | Euphorbiaceae   | Rubber                       | 2642        | 4.96  |
| 6   | Carallia brachiata               | Rhizophoraceae  | Dawata                       | 2037        | 3.83  |
| 7   | Litsea longifolia                | Lauraceae       | Rath-keliya/Rath-kela        | 1512        | 2.84  |
| 8   | Cinnamomum verum                 | Lauraceae       | Kurundu                      | 1379        | 2.59  |
| 9   | Melastoma malabathricum          | Melastomataceae | Maha-bowitiya                | 995         | 1.87  |
| 10  | Gliricidia sepium                | Fabaceae        | Laadappa                     | 934         | 1.75  |
| 11  | Alstonia scholaris               | Apocynaceae     | Rukattana                    | 926         | 1.74  |
| 12  | Acronychia pedunculata           | Rutaceae        | Ankenda                      | 836         | 1.57  |
| 13  | Caryota urens                    | Arecaceae       | Kithul                       | 822         | 1.54  |
| 14  | Artocarpus nobilis               | Moraceae        | Kele-del/Badi-del            | 767         | 1.44  |
| 15  | Gaertnera vaginans               | Rubiaceae       | Pera-thambala                | 760         | 1.43  |
| 16  | Artocarpus heterophyllus         | Moraceae        | Kos                          | 621         | 1.17  |
| 17  | Macaranga peltata                | Euphorbiaceae   | Kenda/Path-kenda             | 579         | 1.09  |
| 18  | Alstonia macrophylla             | Apocynaceae     | Gini-kuru/Hawari-nuga        | 568         | 1.07  |
| 19  | Mallotus tetracoccus             | Euphorbiaceae   | Bu-kenda                     | 533         | 1.00  |
| 20  | Ficus hispida                    | Moraceae        | Kotadimbula                  | 502         | 0.94  |

Table 02: First Twenty Species of Plants with Higher Percentages Reported from MKFS

Table 03 presents the Botanical Names of plants, their families, Sinhala vernacular names of the plants and number of individuals of each species found during the survey. Floristic richness of the MKFS is 62 plant families, 155 plant genera and 207 species of plants.



# **Chart 01: DBH Class Distribution.**

Herbarium vouchers were prepared by the members of the two teams of surveyors, parallel to the inventory survey under my guidance and supervision. Identification of the specimens was also done by me to a certain extent while planning to prepare vouchers of all the species found in MKFS was with help from the permanent staff of MKFS.

Inventory of MKFS is presented as a Microsoft Excel Work Sheet of 1567 pages, with 34 entries per page. First 5 pages with 171 data entries, i.e. data for 171 woody perennial plants are presented in the Appendix (6.3) for representing the Forest Inventory of MKFS.

In addition to the 207 plant species already identified, some specimens are being identified and will be authenticated and then will be documented after the completion of herbarium process by December 2016.

| No. | Plant Name (Species or Genus) | Family         | Vernacular Name (Sinhala) | No. of Ind. |
|-----|-------------------------------|----------------|---------------------------|-------------|
| 1   | Acronychia pedunculata        | Rutaceae       | Ankenda                   | 836         |
| 2   | Adenanthera pavonina          | Fabaceae       | Madatiya/Manchadi         | 19          |
| 3   | Adenia hondala                | Passifloraceae | Hondala                   | 2           |
| 4   | Albizia odoratissima          | Fabaceae       | Suriya-mara               | 95          |
| 5   | Allophylus cobbe              | Sapindaceae    | Kobbe                     | 21          |
| 6   | Alstonia macrophylla          | Apocynaceae    | Gini-kuru/Hawari-nuga     | 568         |
| 7   | Alstonia scholaris            | Apocynaceae    | Rukattana                 | 926         |
| 8   | Anamirta cocculus             | Menispermaceae | Thiththa-wel              | 84          |
| 9   | Anisophyllea cinnamomoides    | Rhizophoraceae | Welipenna                 | 74          |
| 10  | Annona glabra                 | Annonaceae     | Wel-aaththa               | 1           |
| 11  | Annona muricata               | Annonaceae     | Katu-anoda                | 38          |
| 12  | Annona reticulata             | Annonaceae     | Weli-anoda                | 1           |
| 13  | Anodendron paniculatum        | Apocynaceae    | Duhul/Dul-wela            | 478         |
| 14  | Antidesma alexiteria ?        | Phyllanthaceae | Embilla                   | 9           |
| 15  | Aporusa sp.                   | Euphorbiaceae  | Kebella                   | 253         |
| 16  | Areca catechu                 | Arecaceae      | Puwak                     | 182         |
| 17  | Areca concinnaira             | Arecaceae      | Lenathari                 | 13          |
| 18  | Argyreia (thwaitesii)?        | Convolvulaceae | Ma-banda                  | 4           |
| 19  | Artabotrys zeylanicus         | Annonaceae     | Kalu-bambara-wel          | 14          |
| 20  | Artocarpus altilis            | Moraceae       | Del/Rata-del              | 14          |
| 21  | Artocarpus heterophyllus      | Moraceae       | Kos                       | 621         |
| 22  | Artocarpus nobilis            | Moraceae       | Kele-del/Badi-del         | 767         |
| 23  | Averrhoa bilimbi              | Oxalidaceae    | Biling                    | 1           |
| 24  | Averrhoa carambola            | Oxalidaceae    | Kambaranka                | 6           |
| 25  | Baccaurea motleyana           | Phyllanthaceae | Gaduguda                  | 26          |
| 26  | Bambusa sp.                   | Poaceae        | Bata                      | 1           |
| 27  | Barringtonia racemosa         | Lecythidaceae  | Diya-midella              | 27          |
| 28  | Berrya cordifolia             | Malvaceae      | Halmilla                  | 1           |

 Table 03: Botanical Names, Plant Families, Sinhala Vernacular Name/s and Number of Individuals per Species Recorded in MKFS during the Preliminary Inventory Survey.

| 29 | Bhesa ceylanica            | Centroplacaceae        | Pelan/Pelanga    | 244  |
|----|----------------------------|------------------------|------------------|------|
| 30 | Bombax ceiba               | Malvaceae              | Imbul/Katu-imbul | 123  |
| 31 | Bridelia moonii            | Euphorbiaceae          | Path-kela        | 192  |
| 32 | Bridelia retusa            | Euphorbiaceae          | Keta-kela        | 32   |
| 33 | Caesalpinia bonduc         | Fabaceae               | Kumburu-wel      | 3    |
| 34 | Calamus thwaitesii         | Arecaceae              | Wewal/Ma-wewal   | 341  |
| 35 | Callistemon sp.            | Myrtaceae              | Lothsumbul       | 1    |
| 36 | Calophyllum bracteatum     | Calophyllaceae         | Walu-keena       | 32   |
| 37 | Calophyllum calaba         | Calophyllaceae         | Guru-keena       | 5    |
| 38 | Calophyllum inophyllum     | Calophyllaceae         | Domba            | 131  |
| 39 | Calophyllum sp. ?          | Calophyllaceae         | Cheena           | 4    |
| 40 | Camellia sinensis          | Theaceae               | The              | 1    |
| 41 | Canarium zeylanicum        | Burseraceae            | Kekuna           | 22   |
| 42 | Canthium coromandelicum    | Rubiaceae              | Kara             | 41   |
| 43 | Carallia brachiata         | Rhizophoraceae         | Dawata           | 2037 |
| 44 | Caryota sp. (Kuru-kithul)  | Arecaceae              | Kuru-kithul      | 5    |
| 45 | Caryota urens              | Arecaceae              | Kithul           | 822  |
| 46 | Cassia fistula             | Fabaceae               | Ehela            | 6    |
| 47 | Ceiba pentandra            | Malvaceae              | Kotta-pulun      | 3    |
| 48 | Celtis timorensis          | Cannabaceae (Ulmaceae) | Gurenda          | 1    |
| 49 | Chaetocarpus castanocarpus | Euphorbiaceae          | Hedawaka         | 192  |
| 50 | Cheilocostus speciosus     | Costaceae              | Thebu            | 1    |
| 51 | Chloroxylon swietenia      | Rutaceae               | Burutha          | 4    |
| 52 | Chrysophyllum cainito      | Sapotaceae             | Kiri-palu        | 8    |
| 53 | Cinnamomum dubium ?        | Lauraceae              | Wal-kurudu       | 1    |
| 54 | Cinnamomum verum           | Lauraceae              | Kurundu          | 1379 |
| 55 | Citrus aurantiifolia       | Rutaceae               | Dehi             | 4    |
| 56 | Citrus aurantium           | Rutaceae               | Ambul-dodam      | 14   |
| 57 | Citrus grandis             | Rutaceae               | Jambola          | 1    |
| 58 | Citrus reticulata          | Rutaceae               | Naran            | 10   |
| 59 | Citrus sinensis ?          | Rutaceae               | Dodam/Dodan      | 21   |

| 60 | Citrus x madurensis            | Rutaceae         | Nas-naran                | 7    |
|----|--------------------------------|------------------|--------------------------|------|
| 61 | Cleistocalyx nervosum          | Myrtaceae        | Batadomba                | 2912 |
| 62 | Clerodendrum infortunatum      | Lamiaceae        | Pinna                    | 9391 |
| 63 | Cocos nucifera                 | Arecaceae        | Pol                      | 13   |
| 64 | Cocos nucifera var. aurantiaca | Arecaceae        | Thambili                 | 2    |
| 65 | Codiaeum variegatum            | Euphorbiaceae    | Croton                   | 1    |
| 66 | Coffea arabica                 | Rubiaceae        | Kopi                     | 265  |
| 67 | Combretum albidum              | Combretaceae     | Kaduru-ketiya-wel        | 50   |
| 68 | Coscinium fenestratum          | Menispermaceae   | Weniwel                  | 4    |
| 69 | Croton laccifer                | Euphorbiaceae    | Keppetiya                | 10   |
| 70 | Cynometra cauliflora           | Fabaceae         | Naminan                  | 4    |
| 71 | Dalbergia pseudo-sissoo        | Fabaceae         | Bambara-wel              | 25   |
| 72 | Dillenia indica                | Dilleniaceae     | Honda-para               | 46   |
| 73 | Dillenia suffruticosa          | Dilleniaceae     | Kaha-para/Kaha-diya-para | 51   |
| 74 | Dimocarpus longan              | Sapindaceae      | Mora                     | 16   |
| 75 | Diospyros blancoi              | Ebenaceae        | Bool-apple/Velvet-apple  | 9    |
| 76 | Diospyros insignis             | Ebenaceae        | Poro-mara/Porwa-mara     | 8    |
| 77 | Diospyros sp. 1 (Kalumadiriya) | Ebenaceae        | Kalumadiriya             | 1    |
| 78 | Diospyros sp. 2 (Kaluwara)     | Ebenaceae        | Kaluwara                 | 59   |
| 79 | Dipterocarpus zeylanicus       | Dipterocarpaceae | Hora                     | 404  |
| 80 | Durio zibethinus               | Malvaceae        | Duriyan                  | 73   |
| 81 | Elaeagnus latifolia            | Elaeagnaceae     | Embilla-wel              | 63   |
| 82 | Elaeocarpus serratus           | Elaeocarpaceae   | Weralu                   | 337  |
| 83 | Entada pusaetha                | Fabaceae         | Pus-wel                  | 9    |
| 84 | Erythroxylum moonii            | Erythroxylaceae  | Batakirilla              | 2    |
| 85 | Ficus arnottiana               | Moraceae         | Kaputu/Pathan/Wal-bo     | 8    |
| 86 | Ficus callosa                  | Moraceae         | Gonna                    | 101  |
| 87 | Ficus exasperata               | Moraceae         | Bu-deliya                | 50   |
| 88 | Ficus fergusoni ?              | Moraceae         | Kos-gona                 | 9    |
| 89 | Ficus hispida                  | Moraceae         | Kotadimbula              | 502  |
| 90 | Ficus laevis                   | Moraceae         | Nuga-wel                 | 10   |

| 91  | Ficus religiosa        | Moraceae                    | Во                          | 1    |
|-----|------------------------|-----------------------------|-----------------------------|------|
| 92  | Ficus tinctoria        | Moraceae                    | Ehetu                       | 188  |
| 93  | Ficus tsjahela         | Moraceae                    | Kiri-pela, Kiripella (Nuga) | 30   |
| 94  | Filicium decipiens     | Sapindaceae                 | Pihimbiya                   | 17   |
| 95  | Flacourtia indica      | Salicaceae (Flacourtiaceae) | Uguressa                    | 9    |
| 96  | Gaertnera vaginans     | Rubiaceae                   | Pera-thambala               | 760  |
| 97  | Garcinia mangostana    | Clusiaceae                  | Mangus                      | 13   |
| 98  | Garcinia quaesita      | Clusiaceae                  | Goraka                      | 190  |
| 99  | Gardenia jasminoides   | Rubiaceae                   | Gardiniya                   | 1    |
| 100 | Gliricidia sepium      | Fabaceae                    | Laadappa                    | 934  |
| 101 | Glochidion sp.         | Euphorbiaceae               | Kirilla                     | 477  |
| 102 | Gomphia serrata        | Ochnaceae                   | Bo-kera                     | 54   |
| 103 | Gyrinops walla         | Thymelaeaceae               | Walla-patta                 | 442  |
| 104 | Hedyotis fruticosa     | Rubiaceae                   | Weraniya                    | 313  |
| 105 | Hevea brasiliensis     | Euphorbiaceae               | Rubber                      | 2642 |
| 106 | Hibiscus furcatus      | Malvaceae                   | Napiriththa                 | 17   |
| 107 | Hiptage benghalensis   | Malpighiaceae               | Puwak-gediya-wel            | 2    |
| 108 | Homalium ceylanicum    | Flacourtiaceae              | Eta-heraliya/Liyan          | 1    |
| 109 | Horsfieldia irya       | Myristicaceae               | Iriya/Eeriya                | 279  |
| 110 | Ixora coccinea         | Rubiaceae                   | Rath-mal/Rathambala         | 221  |
| 111 | Jatropha multifida     | Euphorbiaceae               | Mayura-paada                | 1    |
| 112 | Lagerstroemia speciosa | Lythraceae                  | Murutha                     | 11   |
| 113 | Lannea coromandelica   | Anacardiaceae               | Hik                         | 207  |
| 114 | Lantana camara         | Verbenaceae                 | Baloliya/Gandapana          | 1    |
| 115 | Leea indica            | Leeaceae/Vitaceae           | Burulla/Gurulla             | 128  |
| 116 | Limonia acidissima     | Rutaceae                    | Diwul                       | 1    |
| 117 | Litsea longifolia      | Lauraceae                   | Rath-keliya/Rath-kela       | 1512 |
| 118 | Macaranga peltata      | Euphorbiaceae               | Kenda/Path-kenda            | 579  |
| 119 | Madhuca longifolia     | Sapotaceae                  | Mee                         | 54   |
| 120 | Magnolia champaca      | Magnoliaceae                | Sapu/Gini-sapu              | 5    |
| 121 | Mallotus tetracoccus   | Euphorbiaceae               | Bu-kenda                    | 533  |

| 122 | Mangifera indica          | Anacardiaceae   | Amba           | 77  |
|-----|---------------------------|-----------------|----------------|-----|
| 123 | Margaritaria indica       | Phyllanthaceae  | Karaw          | 1   |
| 124 | Melastoma malabathricum   | Melastomataceae | Maha-bowitiya  | 995 |
| 125 | Melia azedarach ?         | Meliaceae       | Lunu-midella   | 2   |
| 126 | Melicope lunu-ankenda     | Rutaceae        | Lunu-ankenda   | 1   |
| 127 | Memecylon sp.             | Melastomataceae | Kora-kaha      | 25  |
| 128 | Mesua ferrea              | Calophyllaceae  | Na             | 439 |
| 129 | Mimusops elengi           | Sapotaceae      | Muna-mal       | 6   |
| 130 | Morinda citrifolia        | Rubiaceae       | Ahu            | 2   |
| 131 | Moringa oleifera          | Moringaceae     | Murunga        | 1   |
| 132 | Murraya koenigii          | Rutaceae        | Karapincha     | 2   |
| 133 | Murraya paniculata        | Rutaceae        | Etteria        | 5   |
| 134 | Mussaenda frondosa        | Rubiaceae       | Mussenda       | 66  |
| 135 | Myristica dactyloides     | Myristicaceae   | Malaboda       | 274 |
| 136 | Myristica fragrans        | Myristicaceae   | Sadikka        | 1   |
| 137 | Neolitsea cassia          | Lauraceae       | Dawul-kurundu  | 35  |
| 138 | Nephelium lappaceum       | Sapindaceae     | Rambutan       | 303 |
| 139 | Nothopegia beddomei       | Anacardiaceae   | Bala           | 1   |
| 140 | Ochna sp.                 | Ochnaceae       | Mal-kera       | 65  |
| 141 | Oncosperma fasciculatum   | Arecaceae       | Katu-kithul    | 5   |
| 142 | Oroxylum indicum          | Bignoniaceae    | Thotila        | 2   |
| 143 | Osbeckia octandra         | Melastomataceae | Bowitiya       | 31  |
| 144 | Pagiantha dichotoma       | Apocynaceae     | Goda-kaduru    | 86  |
| 145 | Palaquium sp.             | Sapotaceae      | Kiri-hambiliya | 7   |
| 146 | Pandanus sp.              | Pandanaceae     | Wetakeiya      | 2   |
| 147 | Paraserianthes falcataria | Fabaceae        | Albeesiya      | 210 |
| 148 | Passiflora edulis         | Passifloraceae  | Wel-dodam      | 4   |
| 149 | Pericopsis mooniana       | Fabaceae        | Nadun          | 140 |
| 150 | Persea americana          | Lauraceae       | Ali-geta-pera  | 3   |
| 151 | Persea macrantha          | Lauraceae       | Ululu/Ulul     | 254 |
| 152 | Phyllanthus emblica       | Phyllanthaceae  | Nelli          | 3   |

| 153 | Phyllanthus reticulatus          | Euphorbiaceae               | Kayila/Kaila         | 320  |
|-----|----------------------------------|-----------------------------|----------------------|------|
| 154 | Pometia pinnata                  | Sapindaceae                 | Na-imbul             | 439  |
| 155 | Pouteria campechiana             | Sapotaceae                  | Lawulu               | 12   |
| 156 | Psidium guajava                  | Myrtaceae                   | Pera                 | 4    |
| 157 | Psidium guineense                | Myrtaceae                   | Ambul-pera           | 1    |
| 158 | Pterocarpus indicus ?            | Fabaceae                    | Gammalu              | 3    |
| 159 | Pterospermum suberifolium        | Malvaceae                   | Welang               | 56   |
| 160 | Quassia indica                   | Simaroubaceae               | Samadara             | 107  |
| 161 | Salacia reticulata               | Celastraceae                | Kothala-himbutu      | 11   |
| 162 | Samanea saman?                   | Fabaceae                    | Maara                | 4    |
| 163 | Sandoricum koetjape              | Meliaceae                   | Donka/Donga          | 11   |
| 164 | Santalum album                   | Santalaceae                 | Sudu-handun          | 1    |
| 165 | Saraca asoca                     | Fabaceae                    | Asoka                | 1    |
| 166 | Sauropus androgynus              | Euphorbiaceae               | Japan-batu/Malla-dum | 15   |
| 167 | Schefflera stellata              | Araliaceae                  | Iththa               | 154  |
| 168 | Schumacheria castanaefolia       | Dilleniaceae                | Kekiri-wara          | 135  |
| 169 | Scolopia acuminata               | Salicaceae (Flacourtiaceae) | Katu-kenda           | 5    |
| 170 | Semecarpus sp.                   | Anacardiaceae               | Badulla              | 44   |
| 171 | Senna auriculata                 | Fabaceae                    | Ranawara             | 1    |
| 172 | Shorea affinis                   | Dipterocarpaceae            | Beraliya-dun         | 23   |
| 173 | Shorea congestiflora             | Dipterocarpaceae            | Thiniya              | 11   |
| 174 | Shorea sp. (Dun)                 | Dipterocarpaceae            | Dun                  | 412  |
| 175 | Shorea trapezifolia              | Dipterocarpaceae            | Yakahalu             | 4    |
| 176 | Smilax sp.                       | Smilacaceae                 | Kabarasa/Kabaressa   | 12   |
| 177 | Spondias dulcis/Spondias pinnata | Anacardiaceae               | Ambarella            | 3    |
| 178 | Stachytarpheta mutabilis (Pink)  | Verbenaceae                 | Balu-naguta (Rosa)   | 1    |
| 179 | Stachytarpheta urticaefolia?     | Verbenaceae                 | Balu-baguta (Nil)    | 2    |
| 180 | Sterculia balanghas              | Malvaceae                   | Nawa                 | 2    |
| 181 | Strobilanthes sp.                | ·                           |                      | 9    |
| 182 | Swietenia macrophylla            | *                           |                      | 14   |
| 183 | Symplocos cochinchinensis        | Symplocaceae                | Bombu                | 8451 |

| 184   | Syzygium aromaticum      |                        |                          |        |  |
|-------|--------------------------|------------------------|--------------------------|--------|--|
| 185   | Syzygium caryophyllatum  | Myrtaceae              | Dan                      | 2893   |  |
| 186   | Syzygium cumini          | Myrtaceae              | Damba                    | 3      |  |
| 187   | Syzygium jambos          | Myrtaceae              | Pini-jambu               | 9      |  |
| 188   | Syzygium rubicundum      | Myrtaceae              | Kurumbattiya             | 43     |  |
| 189   | Syzygium samarangense?   | Myrtaceae              | Jambu                    | 22     |  |
| 190   | Syzygium sp. (Wal-jambu) | Myrtaceae              | Wal-jambu                | 5      |  |
| 191   | Syzygium zeylanicum      | Myrtaceae              | Yakul-maran/Yakada-maran | 27     |  |
| 192   | Terminalia arjuna        | Combretaceae           | Kumbuk                   | 8      |  |
| 193   | Terminalia catappa       | Combretaceae           | Kottamba                 | 4      |  |
| 194   | Tetracera sarmentosa     | Dilleniaceae           | Korasa-wel               | 141    |  |
| 195   | Theobroma cacao          | Malvaceae              | Koko                     | 24     |  |
| 196   | Thottea siliquosa        | Aristolochiaceae       | Thapasara-bulath         | 72     |  |
| 197   | Toddalia asiatica        | Rutaceae               | Kudumiris                | 37     |  |
| 198   | Trema orientalis         | Cannabaceae (Ulmaceae) | Gadumba                  | 235    |  |
| 199   | Turpinia malabarica      | Staphyleaceae          | Kankumbala/Kukul-messa   | 376    |  |
| 200   | Uncaria elliptica        | Rubiaceae              | Apassa-wel               | 11     |  |
| 201   | Vateria copallifera      | Dipterocarpaceae       | Hal                      | 86     |  |
| 202   | Vitex pinnata            | Lamiaceae              | Milla                    | 107    |  |
| 203   | Wendlandia bicuspidata   | Rubiaceae              | Rawan-idala              | 4      |  |
| 204   | Xylopia parviflora       | Annonaceae             | Netaw                    | 457    |  |
| 205   | Ziziphus lucida          | Rhamnaceae             | Yak-eraminiya            | 16     |  |
| 206   | Ziziphus mauritiana      | Rhamnaceae             | Masan                    | 1      |  |
| 207   | Ziziphus oenoplia        | Rhamnaceae             | Eraminiya/Heen-eraminiya | 145    |  |
| 208   | ZZ-Unknown               | Unknown                | Unknown                  | 336    |  |
| 209   | ZZ-Unknown 1, 2, 3 & 4   | Unknown                | Unknown                  | 4      |  |
| 210   | ZZZ-Mahanidikumba ?      | Unknown                | Unknown                  |        |  |
| Total | 207 Species / 155 Genera | 62 Families            | Total Tagged Plants      | 53,254 |  |

### **4** Observations, Conclusions and Recommendations

Forest Inventory of Mahausakande Regenerating Rain Forest Stand (MKFS), the first expected outcome of the project has been achieved successfully. It will be completed after completion of the second outcome, the Reference Herbarium for the Existing Flora of MKFS. A number of new herbarium vouchers of the flora of MKFS prepared according to the standard herbarium techniques were added to its herbarium, arranged systematically according to the plant families and deposited in the insect-proof herbarium cupboard in the resource centre of MKFS. Third outcome is the **Report on the Inventory and the Reference Herbarium of** MKFS. First part of the third outcome is the present report and the second part will be prepared after achieving the second outcome. Floristic data obtained during the survey would be used in estimating the carbon stocks (i.e., to get an idea on the carbon sequestration) of the MKFS in future programmes. This is an important additional outcome of the survey.

Frequent removal of invasive alien species (IAS) of plants, as a management routine, from ground cover of the forest (removal of the forest floor vegetation) is not a fine practice. It will enhance the soil erosion, degrade the quality of seed bank and reduce seedling bank of the climatic climax species, the native woody perennials and further facilitate the light demanding species to invade the system. Economically this removal may have some advantages, but ecologically rather disadvantageous, especially when the soil disturbance is at an extensive level and if it happens during heavy rainy season. This is considered as a great interruption to the succession. Therefore, the removal of IAS of plants should be minimized or completely avoid to assist the natural regeneration of the forest stand, though MKFS is an administered (managed) forest. If the removal of the invasive aliens is a must, then it should be done with zero level of disturbance to the forest soil.

With the advancement of forest succession, with the canopy closing, the menace of invasive plants would disappear because most of them are light demanding species, and not shade tolerating. Occasionally the hiding places of herpetofauna in a semi-natural or regenerating forest like MKFS may be the luxuriant growth of some invasive alien plant species, in the absence of native flora. Therefore, the removal of such growth will cause the direct exposure of these vulnerable fauna and hence it would further help the predators for easy spotting and make quite easy for illegal collectors.

I observed that the frequency of appearing some herpetofauna, such as *Lyriocephalus scutatus* in the MKFS is being reduced significantly (qualitative reduction). Illegal collection for selling, excess predation or escape to the surrounding rubber estates due to the removal of ground flora may be some possible reasons for this population drop. However, it is essential to do an immediate systematic survey to check this quantitative reduction, and accordingly take necessary and timely precautions for their wellbeing.

Further, necessary measures must be implemented to prevent if there is any illegal collection of herpetofauna within the premises of MKFS. The cautious monitoring should be done throughout the day (and night, if possible) to recognize the collectors.

However, spreading of exotic crop plants such as coffee, cocoa and rubber has to be controlled. This can be achieved by removing the early seedlings (emergent from seeds) of these plants. Removal of them at their seeding level is the promising way rather than removal of saplings and/or cutting down of trees, in order to minimize the environmental damage due to such removal, especially the damage caused to the forest soil.

Introduction of exotic ornamentals and/or exotic or native crop plants has to be minimized or completely stopped due to two reasons. Already, there are enough such trees in the system and if more crops or exotics are added to the system, it will disturb first the scenic beauty of the regenerating forest stand and further it will affect the structure and the composition of the system, i.e. the overall physiognomy.

Further incorporation of climatic climax species of tropical wet evergreen vegetation, i.e. lowland rain forest species to MKFS is recommended. However, introduction of several individuals from many species is better than introducing higher number of individuals from a few species in order to increase the diversity and the richness of the forest. Introduction of *Mesua thwaitesii* [Diya-na (S)], *Humboldtia laurifolia* [Gal-karanda (S)], *Cullenia ceylanica* and *C. rosayroana* [Kata-boda or Katu-boda (S)], native rainforest *Calamus* species other than already existing *C. thwaitesii* [Ma-wewal (S)], *Shorea megistophylla* [Honda-beraliya, Kanaberaliya, Maha-beraliya (S)], *Shorea hulanidda* [Hulan-idda, Nawa-dun (S)], other *Dipterocarpus* species such as *D. glandulosus* [Dorana (S)] and *D. hispidus* [Bu-hora (S)], *Loxococcus rupicola* [Dothalu, Ran-dotalu (S)], *Hortonia floribunda* [Wawiya (S)] and some *Stemonoporus* species are suggested herewith.

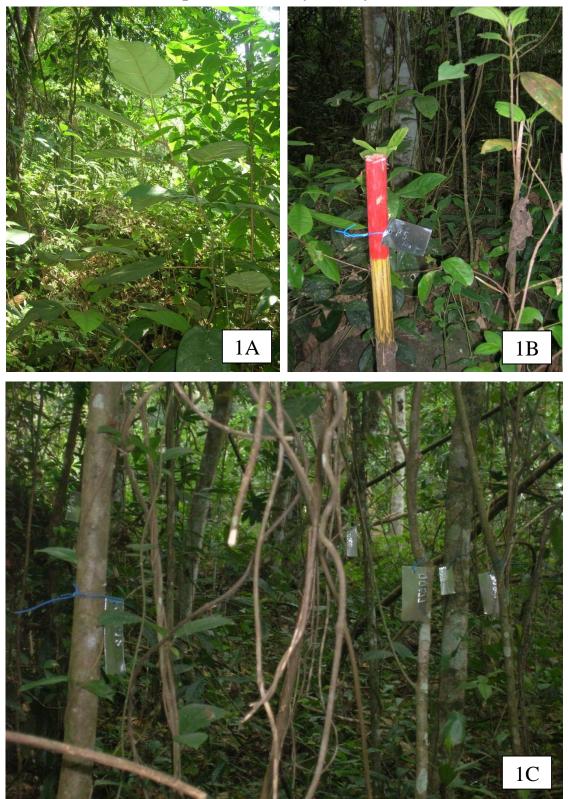
Addition of fertilizer to crop plants may not be a great issue, if they are without any harmful elements to the water bodies and the system itself. However frequent removal of surrounding vegetation before adding fertilizer and clearing of cover vegetation may not be a healthy practice in the long run.

With the continuing growth of climatic climax woody perennials, all the pioneers, secondary vegetation species and invasive aliens such as *Trema orientalis* [Gadumba (S)], *Clerodendrum infortunatum* [Pinna (S)] and *Clidemia hirta* [Kata-kalu-bowitiya (S)] will disappear gradually from the system. This is clearly evident in some sites of the MKFS, as they are almost like a part of a typical rainforest community with giants like *Artocarpus nobilis* [Kele-del (S)] and some native lianas.

Some illegal damages to the *Gyrinops walla* [Walla-patta (S)] trees by peripheral communities were observed throughout my visits to the MKFS during the inventory survey. Any such removal and disturbance will directly affect not only the regeneration process and the forest health, but also the reputation of the management of MKFS. Therefore, steps should be taken to prevent such illegal practices.

As a concluding remark, I must say that the structure and composition of the MKFS, its regenerating process and sustainable management and conservation are at a satisfactory state. However, necessary precautions must be implemented to protect the flora and fauna of the system, physical environment of the system and also to get more ecological services and socioeconomic benefits from the system.

Experiences gained during this *Preliminary Forest Inventory Survey of Mahausakande Regenerating Rain Forest Stand* would definitely be beneficial to conduct the second successive survey. Commencing the second inventory survey is recommended in early 2024, i.e. approximately after 10 years of the first survey and to complete by the end of 2025 and further surveys in 10 year intervals.


## **5** References

- Ekanayake, S.P., Fernando, R.H.S.S., and Bambaradeniya, C.N.B. (2012). *Baseline Assessment* of Sequestered Standing Carbon in Mahausakande Regenerating Rainforest. Mahausakande Tropical Rainforest Regeneration Initiative, Research Paper No.2, 32 pp.
- Ellawala, N. (2012). *Enjoying Freedom: The Story of Mhausakande*. Author Publication, Ellawala Foundation Trust.
- Fernando, R.H.S.S., Ekanayake, S.P., and Bambaradeniya, C.N.B. (2012). Assessment of Forest Regeneration in Mahausakande. Mahausakande Tropical Rainforest Regeneration Initiative, Research Paper No.4, 46 pp.
- Henning, J.G. and Mercker, D.C. (2009). Conducting a Simple Timber Inventory. Department of Forestry, Wildlife and Fisheries, Institute of Agriculture, University of Tennessee, USA.
- Ranasinghe, T., and Bambaradeniya, C.N.B. (2012). Valuation of Ecosystem Services and Options for Sustainable Financing of Mahausakande: A Regenerating Rainforest in Sri Lanka. Mahausakande Tropical Rainforest Regeneration Initiative, Research Paper No.3, 28 pp.
- Wickramasinghe, L.J.M., Bambaradeniya, C.N.B., Vidanapathirana, D.R., and Karunarathna, D.M.S.S. (2012). *Diversity of Herpetofauna in Mahausakande: A Regenerating Rainforest in Sri Lanka. Mahausakande Tropical Rainforest Regeneration Initiative*, Research Paper No.1, 40 pp.

# 6 Appendix

#### 6.1 Glossary of Terms

- 6.1.1. Forest Carbon Stocks: The following carbons pools (a) above-ground tree biomass,
  (b) above-ground sapling biomass, (c) below-ground biomass, (d) soil organic carbon,
  (e) leaf litter, herbs, and grass and (f) dead wood and fallen stumps will be measured in forest carbon estimation. In the present study only (a) and part of (b) and (e) will be considered as it is a preliminary forest inventory survey of MKFS.
- 6.1.2. **Carbon sequestration** describes long-term storage of carbon dioxide (CO<sub>2</sub>) or other forms of carbon to either mitigate or defer global warming and avoid dangerous climate change. It has been proposed as a way to slow the atmospheric and marine accumulation of greenhouse gases, which are released by burning fossil fuels.
- 6.1.3. **Carbon emissions trading** is a form of emissions trading that specifically targets carbon dioxide (calculated in tonnes of carbon dioxide equivalent or tCO<sub>2</sub>e) and it currently constitutes the bulk of emissions trading. This form of permit trading is a common method countries utilize in order to meet their obligations specified by the Kyoto Protocol; namely the reduction of carbon emissions in an attempt to reduce (mitigate) future climate change.
- 6.1.4. **REDD**+ (Reducing Emissions from Deforestation and Forest Degradation "plus" conservation, the sustainable management of forests and enhancement of forest carbon stocks), presents a key opportunity to generate the funding, political will and mechanism necessary to protect forests while combating climate change and improving human well-being in developing nations. It represents a suite of policies, institutional reforms and programs that provide monetary incentives for developing countries to reduce greenhouse gas emissions and sustain economic growth by halting or preventing the destruction of their forests.



6.2.1 Plate 01: Glimpse of Inventory Survey of MKFS - Part 1

Part of MKFS before tagging (1A), during plot demarcation (1B) and after tagging (1C)



6.2.2 Plate 02: Glimpse of Inventory Survey of MKFS - Part 2

Survey in Action - tagging (2A), measuring girth (2B) and recording and checking (2C)

| Inven           | Inventory of Mahausakande Regenerating Rain Forest Stand (MKFS) in Kiriella, Ratnapura, Sri Lanka |       |             |                           |                |        |               |             |  |
|-----------------|---------------------------------------------------------------------------------------------------|-------|-------------|---------------------------|----------------|--------|---------------|-------------|--|
| Tree<br>Tag No. | Plot                                                                                              | Sheet | Tree<br>No. | Speceis                   | Family         | Height | Circf<br>(cm) | DBH<br>(cm) |  |
| 1               | 2                                                                                                 | 5     | 6           | Alstonia macrophylla      | Apocynaceae    | 18     | 101           | 32          |  |
| 2               | 2                                                                                                 | 3     | 15          | Alstonia macrophylla      | Apocynaceae    | 5      | 8             | 3           |  |
| 3               | 2                                                                                                 | 4     | 2           | Cleistocalyx nervosum     | Myrtaceae      | 2      | 5             | 2           |  |
| 4               | 2                                                                                                 | 4     | 7           | Carallia brachiata        | Rhizophoraceae | 8      | 25            | 8           |  |
| 5               | 2                                                                                                 | 4     | 14          | Cleistocalyx nervosum     | Myrtaceae      | 5      | 15            | 5           |  |
| 6               | 2                                                                                                 | 5     | 5           | Symplocos cochinchinensis | Symplocaceae   | 3      | 7             | 2           |  |
| 7               | 1                                                                                                 | 1     | 13          | Symplocos cochinchinensis | Symplocaceae   | 4      | 10            | 3           |  |
| 8               | 1                                                                                                 | 1     | 14          | Clerodendrum infortunatum | Lamiaceae      | 3      | 12            | 4           |  |
| 9               | 1                                                                                                 | 1     | 12          | Nephelium lappaceum       | Sapindaceae    | 5      | 11            | 4           |  |
| 10              | 1                                                                                                 | 1     | 15          | Symplocos cochinchinensis | Symplocaceae   | 4      | 10            | 3           |  |
| 11              | 2                                                                                                 | 2     | 2           | Symplocos cochinchinensis | Symplocaceae   | 3      | 5             | 2           |  |
| 12              | 2                                                                                                 | 2     | 5           | Pericopsis mooniana       | Fabaceae       | 4      | 13            | 4           |  |
| 13              | 2                                                                                                 | 2     | 14          | Symplocos cochinchinensis | Symplocaceae   | 1      | 5             | 2           |  |
| 14              | 2                                                                                                 | 2     | 13          | Litsea longifolia         | Lauraceae      | 2      | 5             | 2           |  |
| 15              | 2                                                                                                 | 1     | 1           | Symplocos cochinchinensis | Symplocaceae   | 1      | 13            | 4           |  |
| 16              | 2                                                                                                 | 2     | 15          | Symplocos cochinchinensis | Symplocaceae   | 2      | 7             | 2           |  |
| 17              | 2                                                                                                 | 2     | 9           | Hevea brasiliensis        | Euphorbiaceae  | 17     | 94            | 30          |  |
| 18              | 2                                                                                                 | 2     | 10          | Calamus thwaitesii        | Arecaceae      | 10     | 9             | 3           |  |
| 19              | 2                                                                                                 | 2     | 11          | Pericopsis mooniana       | Fabaceae       | 4      | 14            | 4           |  |
| 20              | 1                                                                                                 | 1     | 3           | Clerodendrum infortunatum | Lamiaceae      | 3      | 5             | 2           |  |
| 21              | 1                                                                                                 | 6     | 10          | Caryota urens             | Arecaceae      | 2      | 27            | 9           |  |
| 22              | 2                                                                                                 | 4     | 6           | Symplocos cochinchinensis | Symplocaceae   | 4      | 8             | 3           |  |
| 23              | 2                                                                                                 | 4     | 8           | Cleistocalyx nervosum     | Myrtaceae      | 10     | 26            | 8           |  |
| 24              | 2                                                                                                 | 4     | 5           | Cleistocalyx nervosum     | Myrtaceae      | 5      | 11            | 4           |  |

# 6.3 First Five Pages of the Inventory of Mahausakande Regenerating Rain Forest Stand (MKFS)

| 25 | 2 | 4 | 1  | Hevea brasiliensis        | Euphorbiaceae    | 20 | 118 | 38 |
|----|---|---|----|---------------------------|------------------|----|-----|----|
| 26 | 2 | 5 | 10 | Cleistocalyx nervosum     | Myrtaceae        | 4  | 8   | 3  |
| 27 | 2 | 4 | 9  | Gyrinops walla            | Thymelaeaceae    | 3  | 16  | 5  |
| 28 | 2 | 4 | 15 | Calamus thwaitesii        | Arecaceae        | 8  | 12  | 4  |
| 29 | 2 | 5 | 4  | Cleistocalyx nervosum     | Myrtaceae        |    | 6   | 2  |
| 30 | 2 | 4 | 11 | Cleistocalyx nervosum     | Myrtaceae        | 4  | 9   | 3  |
| 31 | 2 | 4 | 10 | Cinnamomum verum          | Lauraceae        | 4  | 7   | 2  |
| 32 | 2 | 5 | 3  | Melastoma malabathricum   | Melastomataceae  | 2  | 8   | 3  |
| 34 | 2 | 4 | 3  | Cleistocalyx nervosum     | Myrtaceae        | 3  | 7   | 2  |
| 35 | 2 | 4 | 4  | Cleistocalyx nervosum     | Myrtaceae        | 4  | 10  | 3  |
| 36 | 2 | 5 | 8  | Cleistocalyx nervosum     | Myrtaceae        | 5  | 13  | 4  |
| 37 | 2 | 4 | 13 | Alstonia macrophylla      | Apocynaceae      | 6  | 10  | 3  |
| 37 | 2 | 5 | 9  | Symplocos cochinchinensis | Symplocaceae     | 4  | 7   | 2  |
| 38 | 2 | 4 | 12 | Cleistocalyx nervosum     | Myrtaceae        | 7  | 18  | 6  |
| 39 | 2 | 5 | 2  | Bridelia moonii           | Euphorbiaceae    | 4  | 9   | 3  |
| 40 | 1 | 1 | 9  | Clerodendrum infortunatum | Lamiaceae        | 4  | 7   | 2  |
| 41 | 2 | 5 | 7  | Cleistocalyx nervosum     | Myrtaceae        | 6  | 18  | 6  |
| 42 | 2 | 5 | 1  | Litsea longifolia         | Lauraceae        | 5  | 13  | 4  |
| 43 | 1 | 1 | 10 | Dipterocarpus zeylanicus  | Dipterocarpaceae | 6  | 13  | 4  |
| 44 | 1 | 6 | 13 | Symplocos cochinchinensis | Symplocaceae     | 8  | 23  | 7  |
| 45 | 1 | 1 | 7  | Hevea brasiliensis        | Euphorbiaceae    | 3  | 6   | 2  |
| 46 | 1 | 1 | 11 | Macaranga peltata         | Euphorbiaceae    | 4  | 17  | 5  |
| 47 | 2 | 2 | 8  | Symplocos cochinchinensis | Symplocaceae     | 2  | 5   | 2  |
| 48 | 2 | 2 | 12 | Litsea longifolia         | Lauraceae        | 6  | 17  | 5  |
| 49 | 2 | 1 | 10 | Symplocos cochinchinensis | Symplocaceae     | 5  | 10  | 3  |
| 50 | 2 | 2 | 3  | Symplocos cochinchinensis | Symplocaceae     | 3  | 5   | 2  |
| 51 | 2 | 1 | 6  | Alstonia macrophylla      | Apocynaceae      | 3  | 5   | 2  |
| 52 | 2 | 1 | 5  | Symplocos cochinchinensis | Symplocaceae     | 3  | 5   | 2  |
| 53 | 2 | 2 | 4  | Alstonia macrophylla      | Apocynaceae      | 3  | 5   | 2  |
| 55 | 1 | 1 | 8  | Alstonia macrophylla      | Apocynaceae      | 3  | 5   | 2  |

| 56 | 1  | 6 | 11 | Clerodendrum infortunatum | Lamiaceae        | 4   | 11 | 4  |
|----|----|---|----|---------------------------|------------------|-----|----|----|
| 57 | 1  | 6 | 4  | Symplocos cochinchinensis | Symplocaceae     | 7   | 14 | 4  |
| 57 | 10 | 4 | 3  | Symplocos cochinchinensis | Symplocaceae     | 4   | 9  | 3  |
| 59 | 1  | 6 | 9  | Symplocos cochinchinensis | Symplocaceae     | 3   | 9  | 3  |
| 60 | 1  | 6 | 5  | Alstonia macrophylla      | Apocynaceae      | 6   | 11 | 4  |
| 61 | 1  | 6 | 3  | Symplocos cochinchinensis | Symplocaceae     | 6   | 15 | 5  |
| 62 | 1  | 1 | 1  | Mesua ferrea              | Calophyllaceae   | 8   | 73 | 23 |
| 63 | 1  | 6 | 7  | Dipterocarpus zeylanicus  | Dipterocarpaceae | 8   | 16 | 5  |
| 64 | 1  | 6 | 1  | Symplocos cochinchinensis | Symplocaceae     | 3   | 9  | 3  |
| 66 | 1  | 1 | 6  | Horsfieldia irya          | Myristicaceae    | 7   | 27 | 9  |
| 67 | 1  | 6 | 14 | Symplocos cochinchinensis | Symplocaceae     | 3   | 6  | 2  |
| 68 | 2  | 3 | 8  | Symplocos cochinchinensis | Symplocaceae     | 3   | 7  | 2  |
| 69 | 2  | 2 | 6  | Symplocos cochinchinensis | Symplocaceae     | 2   | 5  | 2  |
| 70 | 1  | 6 | 6  | Alstonia macrophylla      | Apocynaceae      | 8   | 17 | 5  |
| 71 | 2  | 3 | 6  | Calamus thwaitesii        | Arecaceae        | 9   | 5  | 2  |
| 72 | 2  | 1 | 4  | Symplocos cochinchinensis | Symplocaceae     | 4   | 7  | 2  |
| 73 | 2  | 1 | 3  | Hevea brasiliensis        | Euphorbiaceae    | 102 | 18 | 6  |
| 74 | 2  | 1 | 13 | Symplocos cochinchinensis | Symplocaceae     | 4   | 6  | 2  |
| 75 | 2  | 1 | 14 | Pericopsis mooniana       | Fabaceae         | 4   | 13 | 4  |
| 76 | 2  | 1 | 8  | Syzygium caryophyllatum   | Myrtaceae        | 3   | 6  | 2  |
| 77 | 2  | 1 | 9  | Calamus thwaitesii        | Arecaceae        | 10  | 12 | 4  |
| 78 | 2  | 3 | 12 | Calamus thwaitesii        | Arecaceae        | 13  | 10 | 3  |
| 79 | 2  | 3 | 11 | Hevea brasiliensis        | Euphorbiaceae    | 19  | 69 | 22 |
| 80 | 1  | 6 | 8  | Clerodendrum infortunatum | Lamiaceae        | 3   | 8  | 3  |
| 80 | 2  | 2 | 1  | Symplocos cochinchinensis | Symplocaceae     | 3   | 8  | 3  |
| 81 | 2  | 1 | 11 | Hevea brasiliensis        | Euphorbiaceae    | 20  | 88 | 28 |
| 82 | 2  | 3 | 3  | Pterospermum suberifolium | Malvaceae        | 18  | 33 | 11 |
| 83 | 2  | 3 | 13 | Cleistocalyx nervosum     | Myrtaceae        | 4   | 12 | 4  |
| 84 | 2  | 3 | 4  | Pericopsis mooniana       | Fabaceae         | 5   | 14 | 4  |
| 85 | 1  | 1 | 2  | Clerodendrum infortunatum | Lamiaceae        | 4   | 9  | 3  |

| 85  | 2 | 3 | 2  | Dipterocarpus zeylanicus   | Dipterocarpaceae | 7  | 14  | 4  |
|-----|---|---|----|----------------------------|------------------|----|-----|----|
| 86  | 2 | 1 | 2  | Alstonia macrophylla       | Apocynaceae      | 5  | 7   | 2  |
| 87  | 1 | 6 | 2  | Symplocos cochinchinensis  | Symplocaceae     | 4  | 13  | 4  |
| 88  | 2 | 1 | 12 | Calamus thwaitesii         | Arecaceae        | 8  | 12  | 4  |
| 89  | 2 | 1 | 15 | Symplocos cochinchinensis  | Symplocaceae     | 3  | 7   | 2  |
| 90  | 1 | 6 | 15 | Symplocos cochinchinensis  | Symplocaceae     | 2  | 8   | 3  |
| 91  | 2 | 1 | 7  | Cleistocalyx nervosum      | Myrtaceae        | 3  | 5   | 2  |
| 92  | 2 | 2 | 7  | Myristica dactyloides      | Myristicaceae    | 2  | 5   | 2  |
| 93  | 2 | 3 | 10 | Symplocos cochinchinensis  | Symplocaceae     | 4  | 9   | 3  |
| 94  | 1 | 6 | 12 | Dipterocarpus zeylanicus   | Dipterocarpaceae | 3  | 10  | 3  |
| 95  | 2 | 3 | 5  | Hevea brasiliensis         | Euphorbiaceae    | 17 | 60  | 19 |
| 96  | 1 | 2 | 5  | Clerodendrum infortunatum  | Lamiaceae        | 3  | 8   | 3  |
| 97  | 2 | 3 | 7  | Symplocos cochinchinensis  | Symplocaceae     | 3  | 8   | 3  |
| 98  | 2 | 3 | 1  | Cleistocalyx nervosum      | Myrtaceae        | 4  | 8   | 3  |
| 99  | 2 | 3 | 14 | Pericopsis mooniana        | Fabaceae         | 7  | 14  | 4  |
| 100 | 2 | 3 | 9  | Symplocos cochinchinensis  | Symplocaceae     | 3  | 7   | 2  |
| 102 | 2 | 5 | 13 | Anodendron paniculatum     | Apocynaceae      |    | 5   | 2  |
| 102 | 2 | 5 | 11 | Pericopsis mooniana        | Fabaceae         | 4  | 13  | 4  |
| 103 | 2 | 5 | 14 | Combretum albidum          | Combretaceae     |    | 5   | 2  |
| 105 | 2 | 5 | 12 | Acronychia pedunculata     | Rutaceae         | 8  | 33  | 11 |
| 106 | 2 | 6 | 1  | Symplocos cochinchinensis  | Symplocaceae     | 3  | 7   | 2  |
| 107 | 2 | 7 | 2  | Pericopsis mooniana        | Fabaceae         | 8  | 17  | 5  |
| 108 | 2 | 6 | 2  | Chaetocarpus castanocarpus | Euphorbiaceae    | 2  | 6   | 2  |
| 109 | 2 | 5 | 15 | Pericopsis mooniana        | Fabaceae         | 4  | 8   | 3  |
| 109 | 2 | 7 | 3  | Symplocos cochinchinensis  | Symplocaceae     | 6  | 5   | 2  |
| 110 | 2 | 6 | 3  | Cinnamomum verum           | Lauraceae        | 2  | 6   | 2  |
| 111 | 2 | 6 | 5  | Calamus thwaitesii         | Arecaceae        | 15 | 11  | 4  |
| 112 | 2 | 6 | 4  | Hevea brasiliensis         | Euphorbiaceae    | 20 | 127 | 40 |
| 113 | 2 | 6 | 6  | Symplocos cochinchinensis  | Symplocaceae     | 2  | 5   | 2  |
| 114 | 2 | 6 | 7  | Alstonia macrophylla       | Apocynaceae      | 4  | 9   | 3  |

| 115 | 2 | 6  | 9  | Pericopsis mooniana       | Fabaceae      | 5  | 18  | 6  |
|-----|---|----|----|---------------------------|---------------|----|-----|----|
| 116 | 2 | 6  | 11 | Symplocos cochinchinensis | Symplocaceae  | 9  | 17  | 5  |
| 117 | 2 | 6  | 15 | Hedyotis fruticosa        | Rubiaceae     | 6  | 7   | 2  |
| 118 | 2 | 6  | 12 | Alstonia macrophylla      | Apocynaceae   | 4  | 6   | 2  |
| 119 | 2 | 6  | 13 | Hevea brasiliensis        | Euphorbiaceae | 19 | 111 | 35 |
| 120 | 2 | 10 | 8  | Calamus thwaitesii        | Arecaceae     | 10 | 10  | 3  |
| 121 | 1 | 8  | 8  | Litsea longifolia         | Lauraceae     | 2  | 10  | 3  |
| 122 | 1 | 7  | 8  | Symplocos cochinchinensis | Symplocaceae  | 4  | 6   | 2  |
| 123 | 1 | 8  | 13 | Persea macrantha          | Lauraceae     | 3  | 9   | 3  |
| 124 | 1 | 8  | 14 | Clerodendrum infortunatum | Lamiaceae     | 3  | 9   | 3  |
| 125 | 2 | 10 | 4  | Acronychia pedunculata    | Rutaceae      | 7  | 2   | 1  |
| 127 | 1 | 9  | 2  | Symplocos cochinchinensis | Symplocaceae  | 3  | 8   | 3  |
| 128 | 1 | 9  | 1  | Cleistocalyx nervosum     | Myrtaceae     | 6  | 28  | 9  |
| 129 | 1 | 9  | 9  | Symplocos cochinchinensis | Symplocaceae  | 2  | 5   | 2  |
| 130 | 2 | 10 | 11 | Calamus thwaitesii        | Arecaceae     | 13 | 12  | 4  |
| 133 | 1 | 8  | 9  | Cleistocalyx nervosum     | Myrtaceae     | 7  | 15  | 5  |
| 134 | 1 | 8  | 7  | Litsea longifolia         | Lauraceae     | 2  | 5   | 2  |
| 136 | 2 | 10 | 14 | Cleistocalyx nervosum     | Myrtaceae     | 4  | 11  | 4  |
| 137 | 1 | 3  | 8  | Calamus thwaitesii        | Arecaceae     |    | 8   | 3  |
| 138 | 1 | 3  | 11 | Pericopsis mooniana       | Fabaceae      | 6  | 16  | 5  |
| 138 | 2 | 10 | 7  | Pericopsis mooniana       | Fabaceae      | 6  | 15  | 5  |
| 139 | 1 | 4  | 11 | Cleistocalyx nervosum     | Myrtaceae     | 3  | 5   | 2  |
| 140 | 1 | 3  | 5  | Symplocos cochinchinensis | Symplocaceae  | 4  | 6   | 2  |
| 141 | 1 | 3  | 6  | Symplocos cochinchinensis | Symplocaceae  | 3  | 7   | 2  |
| 143 | 1 | 4  | 9  | Horsfieldia irya          | Myristicaceae | 3  | 6   | 2  |
| 144 | 1 | 4  | 7  | Symplocos cochinchinensis | Symplocaceae  | 3  | 5   | 2  |
| 145 | 1 | 5  | 12 | Symplocos cochinchinensis | Symplocaceae  | 3  | 7   | 2  |
| 146 | 1 | 5  | 14 | Cleistocalyx nervosum     | Myrtaceae     | 8  | 19  | 6  |
| 147 | 1 | 4  | 8  | Litsea longifolia         | Lauraceae     | 6  | 12  | 4  |
| 148 | 1 | 7  | 3  | Horsfieldia irya          | Myristicaceae | 6  | 15  | 5  |

| 148 | 1 | 4 | 6  | Symplocos cochinchinensis | Symplocaceae     | 4  | 8  | 3  |
|-----|---|---|----|---------------------------|------------------|----|----|----|
| 149 | 1 | 3 | 13 | Bridelia moonii           | Euphorbiaceae    | 11 | 38 | 12 |
| 151 | 1 | 4 | 14 | Symplocos cochinchinensis | Symplocaceae     | 4  | 7  | 2  |
| 152 | 1 | 4 | 15 | Acronychia pedunculata    | Rutaceae         | 9  | 42 | 13 |
| 152 | 1 | 4 | 12 | Symplocos cochinchinensis | Symplocaceae     | 3  | 6  | 2  |
| 153 | 1 | 3 | 7  | Pericopsis mooniana       | Fabaceae         | 5  | 14 | 4  |
| 154 | 1 | 5 | 13 | Horsfieldia irya          | Myristicaceae    | 2  | 6  | 2  |
| 155 | 1 | 4 | 10 | Horsfieldia irya          | Myristicaceae    | 2  | 6  | 2  |
| 156 | 1 | 4 | 13 | Symplocos cochinchinensis | Symplocaceae     | 3  | 8  | 3  |
| 157 | 1 | 5 | 15 | Hevea brasiliensis        | Euphorbiaceae    | 4  | 6  | 2  |
| 158 | 1 | 5 | 11 | Cleistocalyx nervosum     | Myrtaceae        | 4  | 8  | 3  |
| 159 | 1 | 3 | 9  | Symplocos cochinchinensis | Symplocaceae     | 3  | 6  | 2  |
| 160 | 1 | 3 | 12 | Clerodendrum infortunatum | Lamiaceae        | 3  | 7  | 2  |
| 161 | 1 | 5 | 5  | Dipterocarpus zeylanicus  | Dipterocarpaceae | 3  | 8  | 3  |
| 162 | 1 | 4 | 4  | Horsfieldia irya          | Myristicaceae    | 3  | 9  | 3  |
| 163 | 1 | 5 | 3  | Cinnamomum verum          | Lauraceae        | 2  | 5  | 2  |
| 164 | 1 | 5 | 4  | Symplocos cochinchinensis | Symplocaceae     | 2  | 5  | 2  |
| 165 | 1 | 5 | 1  | Syzygium caryophyllatum   | Myrtaceae        | 4  | 10 | 3  |
| 166 | 1 | 5 | 8  | Litsea longifolia         | Lauraceae        | 6  | 14 | 4  |
| 167 | 1 | 3 | 14 | Carallia brachiata        | Rhizophoraceae   | 7  | 15 | 5  |
| 169 | 1 | 4 | 5  | Symplocos cochinchinensis | Symplocaceae     | 4  | 7  | 2  |
| 171 | 1 | 4 | 3  | Cleistocalyx nervosum     | Myrtaceae        | 3  | 11 | 4  |

# ACKNOWLEDGEMENTS

- Consultancy and Training, Overall Conduction and Monitoring of Inventory Survey: Dr W.M.G. Asanga S.T.B. Wijetunga
- Financial and Logistic Support: Mrs Nalini Ellawala, the Trustee and the Management of Ellawala Foundation Trust
- Filed Assistance (Surveying and Recording Data): Permanent Field Assistants of (Messrs Sarath Bandara and Pradeep) and Temporary Field Assistants (Messrs Rohan, Kusumsiri, Asanka, Shelton, Chamitha etc.) of MKFS
- Regular Filed Monitoring and Routine Conduction of Inventory Survey: Manager/s of the MKFS (Messrs Gamage and Athula) and Mrs Nalini Ellawala

# • Data Entry:

Mr Yasantha Indrajith Warnathilake, Mrs Achini Erandathie Wijetunga, Master Haritha Chayana Wijetunga and Asanga Wijetunga

Data Merging:

Mr Manoj Kaushalya Ratnayake and Dr Asanga Wijetunga

- Data Analysis: Dr Asanga Wijetunga
- Herbarium Work: Dr Asanga Wijetunga and Mr Sarath Bandara
- Documentation of Inventory: Dr Asanga Wijetunga
- Communication: Messrs Sanoj and Athula
- Transportation: Messrs Ranji and Bandara

I would like express my sincere gratitude to my mother Mrs Karuna Wijetunga, my wife Achini Erandathie, my two sons Haritha Chayana & Asitha Rawana, and my daughter Harini Tikiri Menike for their continuous support and encouragement during the entire process of the survey, my visits to MKFS, data processing and report writing.

W.M.G. Asanga S.T.B. Wijetunga

July 2015