
OPEN

ORIGINAL ARTICLE

Specific detection of dengue and Zika virus antibodies
using envelope proteins with mutations in the
conserved fusion loop

Alexandra Rockstroh1, Beyene Moges1, Luisa Barzon2, Alessandro Sinigaglia2, Giorgio Palù2,
Widuranga Kumbukgolla3, Jonas Schmidt-Chanasit4,5, Manoel Sarno6,7, Carlos Brites6, Andres Moreira-Soto8,9,
Jan Felix Drexler5,9, Orlando C Ferreira10 and Sebastian Ulbert1

Detection of antibodies is widely used for the diagnosis of infections with arthropod-borne flaviviruses including dengue (DENV)

and Zika virus (ZIKV). Due to the emergence of ZIKV in areas endemic for DENV, massive co-circulation is observed and

methods to specifically diagnose these infections and differentiate them from each other are mandatory. However, serological

assays for flaviviruses in general, and for DENV and ZIKV in particular, are compromised by the high degree of similarities in

their proteins which can lead to cross-reacting antibodies and false-positive test results. Cross-reacting flavivirus antibodies

mainly target the highly conserved fusion loop (FL) domain in the viral envelope (E-) protein, and we and others have shown

previously that recombinant E-proteins bearing FL-mutations strongly reduce cross-reactivity. Here we investigate whether such

mutant E-proteins can be used to specifically detect antibodies against DENV and ZIKV in an ELISA-format. IgM antibodies

against DENV and ZIKV virus were detected with 100% and 94.2% specificity and 90.7% and 87.5% sensitivity, respectively.

For IgG the mutant E-proteins showed cross-reactivity, which was overcome by pre-incubation of the sera with the heterologous

antigen. This resulted in specificities of 97.1% and 97.9% and in sensitivities of 100% and 100% for the DENV and ZIKV

antigens, respectively. Our results suggest that E-proteins bearing mutations in the FL-domain have a high potential for the

development of serological DENV and ZIKV tests with high specificity.
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INTRODUCTION

Arthropod-transmitted flaviviruses are small, enveloped RNA viruses,
which are endemic to many parts of the world. They include a large
number of important human pathogens, such as dengue, Zika, yellow
fever, West Nile, Japanese encephalitis and tick-borne encephalitis
viruses (DENV, ZIKV, YFV, WNV, JEV and TBEV, respectively).1 On
the basis of their antigenic properties, flaviviruses are divided into
distinct serocomplexes, such as the JEV serocomplex (which contains
JEV, WNV and others), or the DENV serocomplex (with the different
dengue virus serotypes).2 Among flaviviruses, DENV is causing the
most severe impact on human health. Current estimates for DENV
infections reach 400 million worldwide, occurring in over a hundred
tropical and subtropical countries, and leading to thousands of deaths
per year.3 Recently, several candidate DENV-vaccines have been tested
in clinical trials, and the first product was licensed in some endemic
countries.4,5 ZIKV, which had remained unnoticed in Africa for

decades, emerged in the South Pacific in 2007 and was introduced to
South America in 2014, where it is currently spreading.6,7 ZIKV causes
febrile illness, but it also appears to be linked to Guillain-Barré
syndrome as well as microcephaly in newborns.8 Many of the human
pathogenic flaviviruses are transmitted by the same mosquito species
(especially of the genus Aedes), and areas where different flaviviruses
co-circulate are increasing in number, most importantly DENV and
ZIKV in South America.9,10

Serological diagnosis of flavivirus infections relies on the measure-
ment of IgM and IgG antibodies which usually appear about a week
after symptoms onset.11–13 Acute infections are diagnosed either by the
detection of IgM or by a rising IgG antibody titer from the acute to the
convalescent phases of infection. In secondary flavivirus infections, a
measurable IgM response can be very low or absent 7,14 and IgG tests
become the method of choice. However, specificity in flavivirus
antibody-measurement is significantly hampered by the structural
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similarity of the viruses and the resulting antibody cross-reactivity.15–17

This is of considerable concern especially for IgG-based assays, as it
leads to false-positive test results.18,19 The massive co-circulation of
ZIKV and DENV has dramatically increased the problem. Antibodies
against ZIKV are particularly cross-reactive to DENV and vice versa
due to conserved parts of their proteins.2 As a consequence, currently
available tests are severely compromised by cross-reacting antibodies.20

To validate serological results, virus neutralization tests have to be
performed, which are time consuming and require BSL-3 facilities.21

Therefore, there is a strong need for the development of techniques
that have high sensitivity and specificity to detect and differentiate
flavivirus antibodies and allow a high-throughput analysis.
The predominant target for cross-reacting antibodies is the fusion

loop (FL) domain in the flavivirus envelope (E) protein, a short
amino-acid sequence which is almost identical in many pathogenic
flaviviruses.22–24 It was shown before that mutating residues within
this domain reduces binding of cross-reactive antibodies.25–27 By using
recombinant proteins that contain point mutations within and near
the FL, we have previously generated systems to specifically diagnose
WNV and DENV infections, respectively.28,29 Here, we have analyzed
the potential of this technology to differentiate antibody responses to
DENV and ZIKV infections. Our results suggest that FL-mutant
E-proteins of ZIKV and DENV can be used for a specific serological
diagnosis of both infections.

MATERIAL AND METHODS

Human serum samples
Serum samples were divided into different groups regarding their virus
infections, described in Tables 1 and 2. The origins of the samples
were as follows:
DENV (n= 15), ZIKV (n= 14) and CHIKV (n= 8) IgM and/or

IgG-positive samples were obtained from persons returning from a
stay in endemic areas, TBEV seropositive samples (n= 24) were
obtained from a seroprevalence study in forest rangers in Northeastern
Italy, WNV seropositive sera (n= 28) were obtained from patients
with neuroinvasive disease or fever during outbreaks in Northeastern
Italy. All these samples, as well as 14 negative control sera, were
collected and characterized at Padova University Hospital, Italy.
Ethical approval for these studies was obtained from the Padova

University Hospital Ethics Committee. Another DENV (n= 31), ZIKV
(n= 18) and JEV (n= 4) IgM and/or IgG positive serum samples were
obtained from returning travelers after a stay in endemic areas and
were collected at the Bernhard Nocht Institute for Tropical Medicine,
Hamburg, for diagnostic purposes with written informed consent
from each patient. DENV PCR positive sera (n= 42) were collected in
Sri Lanka with the approval of Ethical Review Boards of the Medical
Research Institute and Lady Ridgway Children Hospital Colombo. 13
ZIKV IgG positive sera were collected in Salvador, Brazil, from
mothers having children with ZIKV infection-associated microce-
phaly. Sampling and testing were approved by the institutional
research ethics board of the federal university of Bahia Climério de
Oliveira. Another DENV (n= 14) IgG and ZIKV (n= 9) IgM and/or
IgG positive samples were collected in Rio de Janeiro, Brazil, with
ethical approval by the ethical committee from the University Hospital
Clementino Fraga Filho (HUCFF). Additional DENV-positive samples
(n= 14), as well as one negative control, were obtained from Sera Care
Life Sciences (Milford, CT, USA) and from Zeptometrix Corporation
(Buffalo, NY, USA) (4 DENV-positive samples and two negative
controls) with sample origin from Colombia, Honduras and Ecuador.
The YFV (n= 8) samples (obtained from the Robert Koch Institute,
Berlin, Germany) were from YFV-vaccinated individuals who had
participated in a randomized controlled vaccination study (approved
by the national ethics committee). The Malaria immune sera (n= 6)
from Ghana were obtained from the Fraunhofer Institute for
Molecular Biology and Applied Ecology, Aachen, Germany. Ethical
clearance was obtained from the Committee on Human Research
Publication and Ethics of the Kwame Nkrumah University of Science
and Technology. All participants in this study provided informed
consent and all samples were analyzed anonymously.

Antigens
The quadruple mutant E-protein from ZIKV (strain H/PF/2013,
E-protein amino acid residues 1–406) bearing the point mutations
T76A, Q77G, W101R and L107R was cloned into pMT/BiP/V5-His
vector (Invitrogen, Carlsbad, CA, USA), expressed in Drosophila S2
cells and purified from cell culture supernatants with IMAC and size
exclusion chromatography as previously described for the DENV
quadruple mutants,29 which were generated accordingly. For

Table 1 Description of serum groups used for IgM measurements

Group N Characteristics N Origin

Year of sample

collection Diagnosis

PCR Neutralization test IgM ELISA IgG ELISA

DENV 54 Acute sera from returning travelers and

DENV endemic regions

12 Italy 2013–2016 10 4 12 7

2 Zeptometrix 0 2 2 2

4 Seracare (Colombia, Hon-

duras, Equador)

2011 0 4 4 4

17 Sri Lanka 2015 17 0 17 n.t.

19 Germany 2011–2016 14 0 19 18

ZIKV 16 Acute sera from returning travelers and

DENV endemic regions

2 Brazil 2015–2016 1 1 2 2

8 Italy 2015–2016 6 2 8 7

6 Germany 2016–2017 4 1 6 6

WNV 16 Residents in WNV endemic regions 16 Italy 2012–2013 0 16 16 16

Abbreviation: not tested, n.t.
Diagnosis was performed at the laboratories supplying the samples for this study, using commercial and in house assays.
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serological IgM and IgG assays, the four DENV 1–4 mutant antigens
were mixed in ratios of 1:1:1:1 and 1:1:1:0.2 (due to increased cross-
reactivity of DENV 4 Equad protein in IgG measurements, as
described 29), in concentrations of 300 ng and 160 ng per well,
respectively, as described.29 The ZIKV Equad antigen was used in
the indicated amounts (Results section).

Antibody measurements
Indicated amounts of ZIKV Equad or DENV 1–4 Equad mixtures
were coated overnight on Nunc polysorb plates (Thermo Scientific) in
100 μL coating buffer (15 mM Na2CO3, 35 mM NaHCO3, pH 9.6) at
4 °C. The plates were washed three times with 350 μL per well of
PBS-0,05% Tween and blocked with 200 μL of 5% non-fat milk
powder (blocking solution) for 2 h at room temperature. After a
second washing step, human sera were diluted 1:100 in 100 μL
blocking solution per well and incubated for 1.5 h at room tempera-
ture. Following a third washing step, the HRP-conjugated secondary
goat anti human IgG (BioRad, Hercules, CA, USA, 1:10 000 in 100 μL
blocking solution per well) or rabbit anti human μ-chain IgM
(Dianova, 1:5000 in 100 μL blocking solution per well) antibody was
added for 1 h at room temperature. After a fourth washing step,
100 μL TMB substrate (Biozol) per well were incubated for 30 min at
room temperature. The reaction was stopped with 50 μL 1 M H2SO4

and signals were read out at 450 nm with background reduction at
520 nm in a micro plate reader (Infinite M200, Tecan).

In competition IgG ELISAs, sera (diluted 1:100 in blocking
solution) were pre-incubated with indicated amounts of the compet-
ing antigen for 1 h at room temperature. Subsequently, they were
added to the blocked antigens on the ELISA plate and incubated for
1.5 h at room temperature. The protocol was then continued as
described above with IgG antibody detection.

Statistical analysis
All antibody measurements were performed in duplicates in at least
two independent experiments, except in Figure 6, where single
measurements were performed due to limited amounts of serum.
Graphical and descriptive statistical analysis of data was carried out
using GraphPad Prism 6 (La Jolla, CA, USA). Statistical significance
was determined using the Holm-Sidak method, with alpha= 5.000%.
Receiver operating characteristics (ROC) optimal curve calculations
were performed in GraphPad Prism 6 with ELISA signals of the
infected specimen and negative sera as control values. Signal cutoffs
with optimal sensitivity and specificity were chosen and data were
interpreted as positive with a signal/cutoff ratio higher than1.1 to
ensure the best specificity. The cutoffs for the individual assay types
are listed in Supplementary Table S1.

RESULTS

To facilitate a specific serological differentiation between DENV and
ZIKV infections, we inserted four amino acid point mutations in the

Figure 1 Titration curves of ZIKV Equad in an (A) IgM and (B) IgG ELISA with ZIKV- positive and negative sera.

Figure 2 IgM ELISA on (A) 300 ng per well of DENV 1–4 Equad and (B) 200 ng per well of ZIKV Equad tested with IgM-positive DENV, ZIKV, WNV and
flavivirus negative human sera. One sample per patient was examined in two independent experiments and plotted as a mean data point indicating
absorbance values. The dotted lines represent cutoffs determined by a ROC analysis with negative sera as controls.
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conserved fusion loop (FL) domain of the ZIKV E-protein (Equad)
and compared it to the previously described DENV 1–4 Equad
mixture, which was shown to significantly reduce cross-reactivities
in dengue serological diagnosis.29

The optimal concentration of ZIKV Equad for ELISA-based IgG
and IgM tests was established through titration of the antigen with
three ZIKV-positive and -negative sera each (Figure 1). Saturation of
ZIKV-positive signals was observed at 200 ng per well in IgM- and
IgG-measurements. Negative sera did not show any background in
both setups through all tested antigen amounts, indicating a high
specificity of the purified ZIKV Equad.
For the DENV 1–4 Equad mixture, the antigen amount per well

yielding optimal sensitivity and specificity in IgM- and IgG- based
ELISAs was determined previously.29

IgM antibodies of DENV-, ZIKV- and WNV-infected human sera
(Table 1) and negative control sera were measured on the DENV
(1–4) Equad mixture (Figure 2A) and on ZIKV Equad (Figure 2B).
The sera from DENV- and ZIKV- infected individuals showed specific
binding on DENV 1–4 Equad and ZIKV Equad, respectively. Negative
control sera were used to calculate a ROC cutoff for each antigen
(Supplementary Table S1) resulting in 90.7% sensitivity for DENV
Equad and 87.5% sensitivity for ZIKV Equad. Both antigens showed
100% specificity of infected sera in comparison to the flavivirus-
negative control samples (Table 3, Supplementary Table S2). No cross-
reactivity was observed on DENV 1–4 Equad with ZIKV- and WNV-
IgM-positive sera, resulting in 100% specificity of this assay

(Figure 2A). The ZIKV Equad antigen yielded 5/54 cross-reactive
DENV- infected samples reducing its specificity versus DENV to
90.7%(total specificity of 94.3% with all ZIKV-negative control
samples). A statistical analysis of all measurements described is shown
in Supplementary Tables S2–S4.
Next, we used the DENV 1–4 Equad mixture and ZIKV Equad to

measure IgG responses in serum samples from DENV-, ZIKV-,
WNV-, JEV- and TBEV-infected persons (Figure 3). For DENV and
ZIKV, sera derived from European travelers returning from endemic
areas (groups DENV-TLa, ZIKV-TLa, Table 2) were used, which
represent mostly primary infections. Non-infected individuals as well
as samples from CHIKV- and Malaria-infected and YFV-vaccinated
persons served as controls. Sera of non-infected individuals were used
for ROC analysis and cutoff calculation in comparison to the DENV-
and ZIKV-positive serum samples resulting in 100% sensitivity for
both antigens (Table 3, Supplementary Table S1). Sera from WNV-,
JEV-, TBEV-, CHIKV-, Malaria-infected and YF-vaccinated indivi-
duals showed no cross-reactivity on the DENV- and ZIKV- Equad
antigens and were detected as negative according to the ROC cutoffs.
For DENV- and ZIKV- positive sera, a statistically significant overall
signal reduction was observed when DENV-positive specimen were
measured on ZIKV Equad and ZIKV-positive sera on the DENV
Equad in comparison to signals on the homologous antigen
(Supplementary Table S3). However, when using the ROC cutoff,
both groups displayed cross-reactive signals leading to several false-

Table 3 Sensitivity and specificity of DENV- and ZIKV- Equad in IgM- and IgG- measurements

DENV Equad ZIKV Equad

Sera N Positive Sensitivity Specificity 95% CI Sera N Positive Sensitivity Specificity 95% CI

IgM
DENV 54 49 90.74% — 79.70%–96.92% DENV 54 5 90.74% 79.70%–96.92%

ZIKV 16 0 — 100% 79.41%–100% ZIKV 16 14 87.5% — 61.65%–98.45%

WNV 16 0 — 100% 79.41%–100% WNV 16 0 100% 79.41%–100%

NEG 17 0 — 100% 80.49%–100% NEG 17 0 100% 80.49%–100%

Total control sera 49 0 100.00 92.75%–100% Total control sera 87 5 94.25% 84.12%–96.70%

IgG
DENV Tla 9 9 100% — 63.37%–100% DENV TLa 9 5 — 44.44% 10.70%–48.41%

ZIKV Tla 12 5 — 58.33% 18.44%–67.08% ZIKV TLa 12 12 100% — 15.70%–84.30%

WNV 24 0 — 100% 85.75%–100% WNV 24 0 100% 85.75%–100%

JEV 4 0 100% 39.76%–100% JEV 4 0 100% 39.76%–100%

TBEV 24 0 — 100% 85.75%–100% TBEV 24 0 100% 85.75%–100%

CHIKV 8 0 — 100% 63.06%–100% CHIKV 8 0 100% 63.06%–100%

YFVvac 8 0 — 100% 63.06%–100% YFVvac 8 0 100% 63.06%–100%

MAL 6 0 — 100% 54.07%–100% MAL 6 0 100% 54.07%–100%

NEG 17 0 — 100% 80.49%–100% NEG 17 0 100% 80.49%–100%

Total control sera 103 5 95.15% 89.03%–98.41% Total control sera 100 5 95% 88.72%–98.36%

IgGcomp
DENV TLb 23 23 100% — 85.18%–100% DENV TLb 23 0 — 100% 85.18%–100%

DENV END 55 55 100% — 93.51%–100% DENV END 55 2 — 96.36% 87.47%–99.56%

ZIKV TLb 18 1 — 94.44% 73.97%–99.87% ZIKV 18 18 100% — 81.47%–100%

(ZIKV END)a 21 18 — 14.29% 3.05%–36.34% ZIKV END 21 21 100% — 83.89%–100%

NEG 17 0 — 100% 80.49%–100% NEG 17 0 0 100% 80.49%–100%

Total control sera 35 1 97.14% 85.08%–99.93% Total control sera 95 2 97.89% 92.60%–99.74%

Abbreviation: Confidence interval, CI, refers to the number of samples in the cohort. Bold entries represent sera groups which are infected with a to the antigen homologous virus and also total
specificites of each test are highlighted in bold.
aGroup was excluded from specificity measurements because of 90% DENV seroprevalence.

Specific dengue and Zika virus diagnosis
A Rockstroh et al

5

Emerging Microbes & Infections



positive results of ZIKV-infected individuals in the DENV- IgG-ELISA
and of DENV-infected individuals in the ZIKV-IgG-ELISA.
To further reduce the IgG cross-reactivity between DENV- and

ZIKV- positive sera, a competition ELISA setup was chosen and tested
with 3 DENV-positive sera which were known to be ZIKV-negative
because they were collected in South America before the ZIKV-
outbreak and 2 ZIKV-infected samples. All of them displayed similarly
high signals in both the DENV- and the ZIKV- IgG ELISA. These sera
were now pre-incubated with a competing antigen (either ZIKV
Equad or the DENV 1–4 Equad mixture) and then measured on the
coated DENV 1–4 Equad or ZIKV Equad. Figure 4A displays
competition experiments with DENV 1–4 Equad that resulted in a
signal drop for dengue positive sera on both antigens caused by the
removal of DENV-specific and ZIKV-cross-reactive antibodies with
increasing amounts of DENV 1–4 Equad as competing antigen. In the
DENV-positive serum 27, removal of DENV- and cross-reactive
ZIKV-antibodies was seen only with 2 μg competitor antigen, about
10fold more than in the other samples. Competition of ZIKV-positive

sera with DENV 1–4 Equad also strongly decreased the signals in
DENV-ELISAs, but only slightly influenced the signals on ZIKV Equad
through all tested competing antigen amounts. The competition with
at least 200 ng of ZIKV Equad (Figure 4B) eliminated ZIKV cross-
reactive antibodies in DENV-infected sera, which then showed low
signals in ZIKV-ELISAs and still well detectable signal intensities in
DENV-ELISAs. For one specimen (21DENV) a signal drop was
observed in DENV-ELISA with ZIKV-competition (Figure 4B), similar
to the ZIKV-infected samples with DENV-competition in the ZIKV-
ELISA (Figure 4A). This illustrates the varying amounts of cross-
reactive antibodies in individual serum samples. The two ZIKV-
positive sera that were competed with ZIKV Equad showed a signal
drop with 200 ng competitor in both ZIKV- and DENV-ELISAs
(Figure 4B).
After having established suitable conditions for competition experi-

ments, DENV- and ZIKV- IgG-positive as well as the negative sera
were then measured on DENV 1–4 Equad after competition with
0.2 μg ZIKV Equad (Figure 5A) and on ZIKV Equad after competition

Figure 3 IgG ELISA on (A) 160 ng per well of DENV 1–4 Equad and (B) 150 ng per well of ZIKV Equad measured with flavivirus positive sera, CHIKV and
Malaria positive and negative sera. One sample per patient was examined in two independent experiments and plotted as a mean data point indicating
absorbance values. The dashed lines represent cut-offs determined by a ROC analysis with negative sera as controls.

Figure 4 Titration of the competing antigen (A) DENV Equad and (B) ZIKV Equad in Dengue and Zika positive sera and IgG measurement on the coated
DENV Equad (blue lines) and ZIKV Equad (red lines).
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with 2 μg of DENV 1–4 Equad (Figure 5B). The higher amount of the
DENV antigen as a competitor was chosen in order to correctly
analyze sera such as sample 27DENV (Figure 4A), which only showed
effective competition after incubation with 2 μg of DENV 1–4 Equad.
ZIKV- and DENV-positive sera were divided into two different

groups each (Table 2): European travelers returning from endemic
countries (primary infections, DENV-TLb and ZIKV-TLb) and
patients from DENV endemic areas in Brazil and Sri Lanka (DENV-
END). A co-infection with ZIKV in the DENV-END group could be
excluded because Brazilian samples were taken in 2008, before the
ZIKV outbreak, and Sri Lanka samples were from 2015 with no
known circulation of ZIKV. However, secondary DENV-infections
were included in this group. In contrast, the samples in the ZIKV-
END group all derived from DENV-endemic areas in Brazil and were
taken in 2016. A previous DENV-infection is therefore likely and was
also found previously with serological test methods in 90% of those
samples (Table 2). In comparison to the IgG assay without competi-
tion, the specificity of both the DENV and the ZIKV Equad ELISAs
(Figure 5 and Supplementary Table S4) was strongly enhanced (100%
for ZIKV Equad and 94.4% for DENV Equad) in the DENV-TLb and
ZIKV-TLb groups. Also in the DENV-END group, all serum samples

were detected as positive for DENV and only two signals were over the
cutoff on the ZIKV antigen. The ZIKV-END samples were all detected
as positive for ZIKV (100% sensitivity), but 85.7% of the samples also
reacted in the DENV-ELISA, which correlates well to the prior DENV
infections present in this group. The course of IgG production against
ZIKV and DENV was also determined using paired samples from the
returning traveler groups. As can be seen from Figure 6, antibody
levels increased during the acute phase in the first 40 days after
symptom onset and remained stable for up to 300 days.

DISCUSSION

Cross-reactivity is a long-known complication in the serological
diagnosis of flavivirus-infections, and several attempts have been made
to develop systems to increase specificities of available test
systems.25,26,28–30 However, due to the epidemic spread of ZIKV in
areas of simultaneous DENV circulation, the problem has gained
another dimension. The specific diagnosis of these infections is
mandatory not only for the implementation of effective control and
surveillance activities, including the conduction of recently started
DENV vaccine trials, but also for the timely treatment of potentially
life-threatening disease symptoms. However, available DENV-tests are

Figure 5 IgG Competition ELISA: Sera were measured on (A) 160 ng/well of DENV 1–4 Equad with 200 ng per well ZIKV Equad competition and
(B) 150 ng of ZIKV Equad with 2 μg of DENV 1–4 competition. One sample per patient was examined in two independent experiments and plotted as a
mean data point. The dashed lines represent cutoffs determined by a ROC analysis with negative sera as controls.

Figure 6 IgG competition ELISA of paired serum samples from European travelers infected with ZIKV (A) and DENV (B) measured on 150 ng of ZIKV
Equad (A) with DENV Equad competition and on 160 ng of DENV 1–4 Equad (B) with ZIKV competition.
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severely affected by ZIKV-antibodies, leading to a large number of
false positive test results.20,31,32 Recently, ZIKV ELISAs based on NS1-
proteins as antigens have been made commercially available, but
limitations in IgM and/or IgG detection have been reported.33–36 Here
we present a system for the specific and sensitive serological diagnosis
of DENV- and ZIKV infections, based on the E-protein as antigen.
The E-protein is widely used in serological flavivirus diagnosis, as
virtually all infected individuals generate antibodies against it. On the
other hand, it is targeted by cross-reactive antibodies, which mainly
recognize the conserved FL-domain. By using mutations within and
next to the FL-domain of the E-proteins of DENV and ZIKV, we
found that IgM antibodies show greatly reduced cross-reactivity and
bind specifically to the homologous antigen. This is in line with
previous reports indicating that IgM responses against flaviviruses are
more specific than IgG,19 although cross-reactivity has also been
described.7,37 However, IgM antibodies are often produced only in low
amounts, especially in secondary flavivirus infections or after a
vaccination and are shortlived,14,38 hence IgG measurements become
necessary. Using the mutant E-proteins, IgG antibodies present in the
DENV- and ZIKV-positive sera did show cross-reactive binding to the
ZIKV- and the DENV-antigens, respectively, although serum samples
from WNV-, JEV- and TBEV-infected persons remained negative in
both ELISAs, confirming previous results with the DENV antigen.29

On the basis of the sequence conservation of the E-protein ectodo-
mains, ZIKV is more closely related to DENV than to the JEV-
serocomplex, with amino acids identities of 52% and 54–57% when
comparing ZIKV to WNV and DENV (four serotypes), respec-
tively.2,39 This minor difference in amino acids identities is apparently
enough to result in a very different binding of cross-reactive antibodies
in sera from infected persons. Antibodies against non-flaviviral vector-
borne pathogens (malaria, chikungunya) did not bind to either
antigen, which underlines the usability of the mutant E-proteins in
the diagnosis of flavivirus infections, whereas false-positive results with
sera from malaria infected persons have been reported for an NS1-
based ZIKV assay.40,41

In order to increase the specificity of the test in the differentiation of
DENV- from ZIKV IgG-antibodies and vice versa, we performed
competition experiments by pre-incubating the sera with one antigen
before measuring them on the ELISA plate coated with the second
one. This resulted in a statistically significant reduction of cross-
reactivities (Supplementary Table S3). Now, ZIKV-infected samples
from returning travelers did not show signals in the DENV ELISA, and
the same was the case for DENV-infected returning travelers in the
ZIKV-test. This demonstrates that, after the competition step, the
mutant antigens are able to differentiate DENV- and ZIKV- IgG
responses. When analyzing DENV-positive samples from inhabitants
of DENV-endemic areas, these were detected as DENV-positive
with high specificity and sensitivity and only 2/55 displayed
low signals over the cutoff in the ZIKV ELISA. Whereas DENV
secondary infections can be assumed for many of the samples within
this group, ZIKV-infections can be excluded. The ZIKV-positive
serum samples in the ZIKV-END group derived from areas with a
high DENV-seroprevalence that can reach up to 80%,42 which
corresponds to the detection of DENV-antibodies in 18/21 samples
using the mutant antigens. This result underlines the need to
simultaneously test for ZIKV- and DENV- IgG antibodies in areas
of co-circulation.
Such secondary flavivirus infections represent a major challenge, not

only for serological diagnosis. Pre-existing flavivirus antibodies might
lead to severe complications of acute DENV- or ZIKV-infections,
including severe dengue and neurological or congenital complications

with ZIKV, as has been suggested by several studies.43–45 Therefore,
tests to identify and discriminate such antibodies are an unmet need
which has to be addressed urgently. Methods as the one presented
here, which are able to detect DENV and ZIKV IgM- and IgG-
antibodies with high specificity and sensitivity, could be very useful in
this respect.
Using paired serum samples we analyzed the rise of IgG antibodies

upon infection with ZIKV and DENV in returning European travelers.
A strong increase in the first 40 days was observed, and DENV-
antibodies seemed to reach a plateau earlier than ZIKV antibodies,
which might be attributed to a generally higher viral load in infections
with DENV compared to ZIKV.46 However, higher numbers of serum
samples need to be analyzed in order to test whether this is indeed a
difference between the two infections
Most of the currently available ZIKV-ELISAs are based on the NS1

protein. Recently published attempts for improvement of ZIKV
serological diagnosis include a microarray-based assay using ZIKV
NS1 and DENV virus particles in a multiplexed format based on a
plasmonic gold platform.47 and a monoclonal ZIKV NS1-antibody in
a blockage-of-binding format.48 The system presented here relies on
another antigen (mutant E-protein) and could, therefore, be used as
an alternative approach in serology, independent of NS1 and also not
dependent on only a single epitope. As the infrastructure for virus
neutralization tests is only available in few specialized laboratories,
confirmation and evaluation of inconclusive results from a particular
serological assay can be performed best with an assay that is based on a
different antigen. Therefore, resulting ELISAs for ZIKV and DENV
could contribute to an accurate diagnosis and surveillance of these two
virus infections, both as stand-alone tests and as means to comple-
ment existing methods.
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