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Unmanned Aerial Vehicles (UAVs) have been developed as a 

feasible tool for agricultural surveillance. Despite the fact that many 
researchers have focused on UAVs' ability to offer information on crop 
growth and development, study on the efficacy of day time period for 
images is extremely uncommon. As a result, the purpose of this 
research was to assess the best flying duration for RGB-based UAV 
technology for field crop monitoring and to develop a procedure for 
monitoring sugarcane using UAVs in Sri Lanka. The study was 
conducted on a five-month-old sugarcane field (1 hectare) in Ampara, 
Sri Lanka. All flights were missioned using a DJI Mavic pro drone (RGB) 
at flying heights, speeds, frontal overlap, and lateral overlap of 50 m, 4 
m/s, 75%, and 70%, respectively. During the experiment day, images 
were captured during three flying time periods: T1 (07:00 – 09:00 h), T2 
(10:00 – 12:00 h), and T3 (13:00 – 15:00 h), with three replicates per 
flight, and plant density (PD) data were manually recorded for 19 plots 

(5m×5m). The orthomosaic images were processed using Agisoft 

PhotoScan software, and the classification and accuracy assessments 
were carried out using Arc GIS to generate vegetation fraction (VF) and 
Green-red vegetation index (GRVI) values. To determine the optimal 
flying time, a relationship between UAV-based VF and plant density 
(PD) was generated. T2 performed better in vegetation mapping, with 
an overall accuracy of 88.37% and a Kappa coefficient of 0.75, because 
more shadowing regions were identified on the other two flights. At T2, 
the most significant correlation between VF and manual plant density 
was detected (R2 = 82.9%, SE = 2.20, P<0.05). T2 demonstrated a very 
strong relation between GRVI and PD (R2 = 82.1%, SE = 2.25, P<0.05). 
Overall, the ideal flight time can give more accurate and accurate crop 
monitoring results. The study concludes that the time range 10:00 – 
12:00h might be used to acquire UAV images for crop monitoring. 
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1. Introduction 

Agricultural monitoring on a regular basis is 

essential for addressing field constraints such as 

field gap detection, pest and disease concerns, 

weed management, and water stress issues in crop 

cultivations, resulting in enhanced production [1]. 

Traditional visual inspection is less productive since 

it involves more effort, money, and time. Precision 

farming technology has lately emerged as one of the 

most potential substitutes for manual crop 

monitoring [2].Satellite remote sensing imagery 

outperforms conventional crop monitoring methods 

[1,3]. However, it has certain disadvantages, such 

as lower spatial resolution, cloud cover, air 

attenuation, and difficult and/or costly collection [4]. 

Unmanned aerial vehicles (UAVs), which are GPS-

equipped autonomous powered aerial vehicles that 

can fly autonomously or be piloted remotely, have 

recently been promoted as a means of overcoming 

the limitations of satellite data because UAVs can be 

deployed quickly and repeatedly, resulting in lower 

costs, greater flexibility in terms of flying heights and 

mission timing, and higher spatial resolutions [1,4]. 

Recently, scientists have focused on studying the 

potential of Unmanned Aerial Vehicles (UAVs) to 
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provide information for a range of applications, such 

as crop status and vigor monitoring, as well as 

stress and disease conditions [5,6]. According to the 

literature, UAVs may be used to create crop 

development monitoring by vegetation analysis for 

Glycine max [7], Zea mays [8], Triticum aestivum [9], 

Saccharum officinarum [1,10], and Oryza sativa [11] 

and plant height evaluation for diverse crops [12–

15]. Due to their inexpensive cost, visible range 

(Red (R), Green (G), and Blue (B)) cameras have 

been promoted over near infrared-based cameras. 

Because of the illumination, the efficacy of the 

UAV images would be impacted throughout flight 

time. Due to the direction of the Sunlight, shadows 

may emerge mostly as a result of the objects 

present in the study area. Furthermore, certain 

materials are strongly reflected, resulting in highly 

saturated images with limited efficacy [16]. As a 

result, the ideal time should be required to minimize 

lighting impacts while capturing images with UAVs, 

and this would ultimately affect the image quality. 

However, studies and applications on the influence 

of flying time of day on crop monitoring in the Sri 

Lankan context are limited, and a complete 

investigation comparing actual field conditions is 

required. As a result, the goal of this study was to 

determine the best time of day for UAVs to acquire 

RGB images and to create a work flow with flying 

parameters for crop monitoring in Sugarcane in Sri 

Lanka. 

2. Material and Methods  

2.1. Study area 

The study was conducted on cultivated land in 

Galoya plantations in Hingurana (7°16'N, 81°41'E) 

on the sugarcane field nearly 14 kilometers from 

Ampara, Sri Lanka (Figure 1). The long-term 

average temperature in this area is 28°C, with 

annual precipitation ranging from 300 to 350 mm. 

Sugarcane, paddy, maize and groundnut are the 

major agricultural crops in this area [17]. 

2.2 Data collection 

Nine flights were conducted over a 1 ha irrigated, 

five-month-old sugarcane field during the whole trial 

on 04th October 2019. During the investigation, the 

DJI Mavic pro drone (DJI, Shenzhen, China) was 

utilized to collect RGB images. It has a payload limit 

of around 1.5kg and a flying endurance of around 30 

minutes with full payload. The images were taken on 

the 1 ha field at three distinct flight periods; T1 

(07:00 – 09:00 h), T2 (10:00 – 12:00 h), and T3 

(13:00 – 15:00 h) on the experiment day, with three 

replicates per mission. Flight plans were created 

using Drone Deploy software [18], which was 

configured with 4m/s flying speed, 75% frontal and 

70% lateral overlap, and a 50 m flying height 

[19].The images have a resolution of 1.5 cm/pixel. 

Prior to flight, the UAV made artificial markings were 

placed on the nine locations of field that had to be 

visible in the images in order to be utilized as ground 

control points (GCPs). To validate the results, field 

plant density values were manually recorded from a 

total of nineteen 5 m X 5 m plots using GPS, and 

field anomalies were also recorded at the same 

time. 

 

Figure 1. Map of the Study area a) location of the 

study, b) Area of interest with sample plots 

2.3 Data Processing and Analysis 

Following image capture, the ortho-mosaicked 

images with true RGB color were analyzed using 

Agisoft photoScan pro software [20], as shown in 

Figure 2. The mosaicked images were 

georeferenced using manually generated nine GCP 

points. 

The green-red vegetation index (GRVI) is 

considered as the one of the best RGB-based 

vegetation indices since it can effectively classify 

images of vegetation and other non-vegetation 

ground covers [21].Therefore, in this study, GRVI 

values were computed from each mosaicked images 

using the equation 01 utilizing the raster calculator in 

ArcGIS software based on these othophoto of RGB 

spectral bands. 

𝐺𝑅𝑉𝐼 =  
𝑅𝑔−𝑅𝑟

𝑅𝑔+𝑅𝑟
……………………………Eq.01 

Where Rg denotes the reflectance of the green 

band and Rr denotes the reflectance of the red 

band. The “GRVI = 0” threshold was utilized to 

distinguish between green vegetation and non-

vegetation coverage [22]. Using zonal statistics [23], 

the mean values of VIs for each plot were 

determined. Using the retrieved GRVI maps, the 

fractional vegetation cover (FVC) was calculated as 

the ratio of the number of pixels classified as 

vegetation to the total number of pixels. The mosaic 

images for each flight were classified as vegetation 
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or non-vegetation using maximum likelihood 

classification method. The accuracy was evaluated 

using kappa accuracy assessment method in order 

to select the best vegetation index, and ultimately, 

FVC values were recorded.There were 100 stratified 

points were evaluated with comparing the RGB 

image to assess the overall accuracy and kappa 

coefficient values for each classified maps. 

Simple linear regression was used to examine 

the relationship between extracted FVC values from 

supervised classification maps and GRVI maps. 

Furthermore, a connection between UAV-based VF 

and plant density was created. These models were 

used to determine the best flying duration based on 

coefficient of determination (R2) and standard error 

(SE)values. 

 

Figure 2. The work flow of image processing and data analysis (UAV = unmanned aerial vehicle, RGB 

=Red, Green, Blue spectral images, VF= vegetation fraction, GRVI = green-red vegetation index, R2 = 

coefficient of determination, SE = standard error) 

3. Results and Discussion 

3.1 Classification of vegetation and non-

vegetation areas 

Based on the three spectral bands, each flight 

was categorized into two binary classes: vegetation 

and non-vegetation areas, and Figure 3A and 3B 

displays the RGB mosaicked images and 

classification output of vegetation/non-vegetation 

maps for each flight times. Table 1 displays the 

results of the accuracy evaluations. Despite the fact 

that all of the flights had improved accuracy results 

in the classification, the overall accuracy and kappa 

coefficient values were the highest in the T2 time 

period, at 88.37% and 0.75, respectively. 

 

 

 

 

Table 1. Accuracy assessment outputs of 

vegetation and non-vegetation classification 

 Class/Accuracy T1 T2 T3 

Overall Accuracy % 79.07 88.37 79.07 

 User’s Accuracy 

• Vegetation % 73.68 76.92 66.67 

• Non-Vegetation % 83.33 93.33 85.71 

Producer’s Accuracy 

• Vegetation % 77.78 83.33 71.43 

• Non-Vegetation % 80 90.32 82.76 

Kappa Coefficient 0.549 0.75 0.53 

(T1 = 07:00-09:00h, T2 = 10:00-12:00h, T3 = 13:00-15:00h) 
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Figure 3. (A)RGB mosaicked images, (B) Classified images and (C) GRVI maps[a) T1 = 07:00-09:00h, b) 

T2 = 10:00-12:00h, c) T3 = 13:00-15:00h] 

 

 

(a) (c) (b) 

(a) (b) (c) 

(a) (b) (c) 
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The kappa coefficient value ranges from -1 to +1, 

with +1 indicating better classification ability [24]. 

The user's accuracy for vegetation regions was 

76.92%, while the producer's accuracy for T2 flight 

time was 83.33%.  

 

Figure 4. Shadowing areas showed in RGB 

mosaic images at different flight times [a) T1 = 

07:00-09:00h, b) T2 = 10:00-12:00h, c) T3 = 13:00-

15:00h] 

Due to the direction of sunlight in the T1 and T2 

flights, it is noticed that numerous shadowing 

regions were generated by elements such as bigger 

trees, concrete posts, and sugarcane trees (Figure 

4).This causes the accuracy of assessment results 

to be reduced. As a result, in Sri Lanka, mid-day 

time would be preferable than early morning or early 

evening time to decrease the shadowing impact for 

image acquisition. However, the accuracy results 

indicated a significant level of success for the 

extraction of vegetation fractions from classified 

maps. 

3.2 Determination of Phenology variations and 

vegetation cover analysis 

Figure 3C depicts the GRVI maps, which 

demonstrate the variance in phenology distribution 

across the field. The value 0 implies that there are 

no phenology characteristics, whereas 1 suggests 

that there are many phenology characters [23]. The 

results indicate that all of the flights had low GRVI 

values due to the presence of less vegetation than 

soil regions. T2 and T3, on the other hand, had the 

highest GRVI values (0.04 and 0.11, respectively), 

indicating greater vegetation at the sample plots 

than T2. The spectral reflectance of shadowed 

regions would be affected, causing the GRVI 

estimates to be reduced. 

3.3 Determination of relationship between 

vegetation cover and plant density 

Linear regression models were developed for 

each time period based on UAV-based VF and 

observed plant density (Figure 5). The highest 

correlation was observed between 10:00 h and 

12:00 h, with R2 = 82.9% and SE = 2.20, while the 

worst performance was recorded between 13.00 h 

and 15:00 h, with R2 = 58.1% and SE = 3.44. 

According to the data, the mid-day period had a 

significant correlation. 

The relationship between UAV-based GRVI 

measurements and ground-truth plant density is 

depicted in Figure 6. The highest correlation was 

found between 10:00 h and 12:00 h (T2). The T2 

model developed successfully explains 82.1% in 

plant density, which was significant at a 0.05 

significance level with a standard error of 2.25 

plants. A recent study showed virtually comparable 

results when assessing sugarcane stalk density 

using RGB-based vegetation indices. The study 

generated a model with R2 of 0.754 and RMSE of 

7.16 stalks between stalk density and Excess green 

index (ExG) [25]. As a result, the time period 10:00-

12:00 h (T2) could be employed to capture images 

using UAVs.Therefore, the proposed methodology 

can be used to monitor the sugarcane fields in any 

areas of Sri Lanka. 

Figure 5. Relationship between the vegetation % and Plant density [a) T1=07:00-09:00h, b) T2=10:00-

12:00h, c) T3=13:00-15:00h] 
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Figure 6. Relationship between the GRVI and Plant density [a) T1=07:00-09:00h, b) T2=10:00-12:00h, c) 

T3=13:00-15:00h] 

4. Conclusion 

This study illustrates the effectiveness of using 

RGB image-based UAVs to assess the vegetation 

cover of a sugarcane field for better planning and 

decision making. The results indicated that a mid-day 

flight time period (T2) would be best for producing 

better image classification results, because early 

morning and evening sessions generate shadowing 

areas in the images due to the sun's direction. The 

most significant association between VF and manual 

plant density was found in T2 (10:00 -12:00 h) (R2 = 

82.9%, SE = 2.20, P 0.05). The T2 indicated a very 

strong relationship between GRVI and PD (R2 = 82.1 

percent, SE = 2.25, P 0.05).As a result, a time period 

of 10:00 -12:00 h would be optimum under UAV flight 

parameters of 50 m flying altitudes, 4 m/s flying 

speed, 75% frontal and 70% lateral overlap to collect 

effective RGB images in Sri Lanka. As an outcome, 

the suggested technique has a high potential for 

selecting the best flying time for a day in Sri Lanka 

and it can be useful to identify the field level problems 

in sugarcane cultivations. The future studies are 

needed to develop methodologies to detect different 

physiological characteristics of sugarcane plants at 

different environmental conditions. 
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