
Volume- 6 ISSN: 2362-0080 

Issue- I  Rajarata University Journal 

June-2021 www.ruj.ac.lk/journals/ 

© RUJ 2021, All Rights Reserved  Page 56  

 

Category: Research Article 
 

A Keyword Driven Hybrid Model for Web Application Testing 

1
Madurapperuma, Dilan, 

*2
Walisadeera, Anusha Indika & 

3
Goonetillake, Jeevani 

1
Axiata Digital Labs, Parkland Level 11, 33 Park St, Colombo 2, Sri Lanka 

*2
Department of Computer Science, University of Ruhuna, Matara, Sri Lanka 

3
University of Colombo School of Computing, Colombo 07, Sri Lanka 

 

ARTICLE DETAILS  ABSTRACT 

Article History 
Published Online: 30 June, 2021 
 

 
Web development is one of the fast-growing techniques in the IT 

field. To ensure error and bug-free web products, they should be tested 

thoroughly. If both Manual and Automated Testing Techniques (MATT) 

are used concurrently, this goal can be accomplished. When MATT is 

considered individually, there are positive and negative factors. In this 

paper, a keyword-driven technique is proposed which helps to bring 

MATT together to solve the problem of "How to ensure the high quality of 

modern web projects with highly redundant tasks at lower cost and less 

amount time?" According to the current literature, manual testing is 

essential to ensure error and bug-free web products, while automated 

testing fulfills the time target of the quality assurance process. The main 

objective of this research is to propose a keyword-driven web testing 

method to ensure error and bugs free web products. The proposed 

method was tested with modern websites. Results showed that the 

proposed method considerably minimizes the average time while 

identifying the errors of test scripts. The proposed method should work 

for every modern web development technique; it also should be a 

sustainable solution to be adapted to future changes in the web 

development industry. 

Keywords 
Software Development, Testing 
Tools, Automated Testing, Manual 
Testing, Web Testing.  

 

*Corresponding Author 

Email:waindika@dcs.ruh.ac.lk 

 

1. Introduction 

Before starting the software development, we 

should manage three factors. They are Quality, 

Time, and Cost, the most important factors in 

software development [1]. One way to ensure the 

quality of a web product is through testing. Testing a 

web page means that checking whether the server's 

response contains what the client requested. Web 

application development is one of the rapidly 

growing areas in the IT field. Since web 

development is frequently modified, the main goal of 

any quality assurance engineer is to create 

sustainable tests [2]. Two approaches are used to 

carry out the web application testing process mainly. 

They are: manual testing and automated testing.  

Manual testing is a testing process where all the 

activities are done by humans manually. "Manual 

testing can be described as a process where a 

person initiates each test, interacts with it, and 

interprets, analyses and reports the results" [3]. 

Automated testing is the testing process where 

human initiates the testing, but, all the other 

activities are done by software. Automated testing is 

a system that uses different data sets, again and 

again, to test without human interaction [4]. Both 

types have positive and negative factors. Reliability, 

repeatability, comprehensibility, reusability, quality, 

speed, low cost (it reduces the long-term costs), and 

high return on investment are the advantages of 

automated testing [5]. It has also been mentioned 

that the disadvantages of automated testing such as 

high initial cost, inability to automate some test 

cases, the requirement of high skills to write the 

automation test cases, and the necessity to change 

the whole test case with respect to a small change in 

API [5]. They further have also specified the 

advantages of manual testing. They are: if the test 

case only needs to run only a few times, it is better 

to use manual testing, and as such, the cost can be 

reduced. It allows the tester to perform more random 

testing, and then more bugs can be found. Short-

term costs could be reduced, and when testers 

spend more time testing a module, then the odds of 

finding bugs are high. Some disadvantages of 

manual testing are also mentioned, such as very 

time-consuming; the necessity to repeat the same 

testing you previously done for every release; not 

suitable for large projects; some test cases can be 

missed by repeating because the tester forgets it; 

and human errors can happen. 

http://www.ruj.ac.lk/journals/
mailto:waindika@dcs.ruh.ac.lk


Hybrid Model for Web Application Testing 

Volume-6, Issue I, June-2021 Rajarata University Journal 

© RUJ 2021, All Rights Reserved  Page 57 Madurapperuma et al. 

There are some scenarios in the web 

development industry that need both manual and 

automated testing features. For example, in short-

term projects with highly redundant tasks, the 

tester needs a combination of manual and 

automated testing. Many research studies in this 

field are trying to address this issue. However, it still 

is remaining as a problem in the industry. The main 

objective of this research study is to propose a 

hybrid model that is compatible with every scenario. 

The testing can be classified into two parts, as 

mentioned above. The question is: "When to 

automate and when not to automate?" Although the 

authors of [6], [7], and [8] have answered the above 

question up to a certain extent, some situations still 

need to be addressed. For example, there are short-

term projects with many redundant tasks. According 

to the research studies mentioned in ([6], [7], and 

[8]) manual testing is recommended for short-term 

projects. On the other hand, if there are many 

redundant components, then automated testing is 

preferred. 

When we consider the cost of testing time for 

manual and automated testing (see Figure 1), 

automated testing is rather beneficial, although its 

starting cost is high. This initial cost would not be a 

burden when considering the benefits of automated 

testing [4].  

 

Figure 1: The cost of testing vs. time [4] 

Some researchers have proposed some 

approaches to incorporate manual and automated 

testing or to mitigate the disadvantages of 

automated testing techniques, however, with some 

drawbacks. There is also a new concept that is 

keyword-driven test automation technique which is 

one of the main adopted frameworks in software 

industries [1]. The keyword-driven testing technique 

is similar to programming but is not as complex as 

programming. In the keyword-driven testing 

technique, the steps required to be performed in 

testing are given as a sequence of instructions. 

These instructions consist of a sequence of 

keywords. This approach is not hard to understand, 

and as such, it is easy to train testers. Keyword-

driven automation technique consists of three major 

parts: Test data, Test libraries, and Test automation 

framework [1]. Test data represents the input and 

corresponding output [1]. Test libraries represent the 

interface of the system under test and the whole 

framework [1]. Test automation framework is for 

reading the test data, executing the test, and 

handling the errors when the tests are under 

execution [1]. The main reason to use the keyword-

driven test automation technique is, it has some key 

benefits that make the testing process easier [9]. 

Some benefits are: 

 easy automation process - a manual tester with 

zero scripting knowledge can quickly automate 

a test case 

 easy maintenance of the scripts 

 efficiency - the overall testing process takes 

less time than manual testing due to the 

availability of open-source  

 cost-effectiveness - it will reduce the cost of 

testing by using the open-source tools 

 easily understandable - business users can also 

join to test and analyze test execution results 

with the help of a keyword-driven test 

automation framework because it is easy to 

understand the process 

 possibility of iterative testing - at the end same 

test case can be performed again and again to 

test the consistency of the application, and also 

the tester can perform various actions (like 

recursive method callings) [9]. 

Despite the above advantages, keyword-driven 

test automation does not combine manual and 

automated testing and instead tries to mitigate some 

of the disadvantages of automated testing. In Jain 

and Sharma's approach, they did not implement for 

testing domain-specific tasks [1]. By using this 

approach, it is not possible to handle short-term 

projects with highly redundant tasks. Jain and 

Sharma's approach does not implement to combine 

both manual and automated testing [1]. As 

mentioned above, in the literature, we can find 

research work that attempts to combine manual and 

automated testing by proposing a set of guidelines. 

To this end, two separate teams are proposed to be 

allocated for manual and automated testing. Both 

teams carry out their tasks separately. SmartBear 

Software introduces a new set of best practices in 

uniting manual and automated testing [10]. In this 

approach, although they combine manual and 

automated testing techniques, the disadvantages of 

both techniques would remain the same since two 

separate teams would perform the two techniques 

by following the corresponding procedure applicable 

to each technique. For example, while developer 

testing is performed, they also propose to start the 

automated testing process [10]. "Developer testing is 

a type of testing where developers test their code as 

C
o

st
 

Time 

Manual

Automa
ted



Hybrid Model for Web Application Testing 

Volume-6, Issue I, June-2021 Rajarata University Journal 

© RUJ 2021, All Rights Reserved  Page 58 Madurapperuma et al. 

they write it, as opposed to testing done by a 

separate quality assurance organization" [11], [12].  

This approach enables to obtain better accuracy and 

achieve time targets [10], even if the disadvantages 

of the two techniques remain the same. 

We propose a new hybrid method of manual and 

automated testing with a low cost through this 

research work. If we have a tool while automated 

test result is being prepared, we can check 

problematic scenarios manually, then, most of the 

questions are solved. Because of the lack of such 

methods and tools, we introduce this method as a 

free and open-source tool. Therefore, we can 

customize this tool to facilitate organizational needs.  

2. Methodology 

We have selected the action design methodology 

in this research since it allows designing the 

research iteratively [13]. In the action research 

design, we have identified four phases. First, we 

need to understand the problem, plan, and develop 

a solution for the problem identified in the 

corresponding iteration. Then, we need to evaluate 

and validate the implemented solution correctly 

addresses the problem. 

Understand the problem and requirements: 

We analyzed the problem and requirements based 

on the meta-Analysis approach [14]. Meta-analysis 

is an analytical methodology designed to 

systematically evaluate and summarize the results 

from previous research, books, and other domain-

related materials. Meta-analysis aims not only to 

summarize existing knowledge but also to develop a 

new understanding of the research problem using 

scientific reasoning. We analyzed several research 

dissertations, online articles, and other domain-

related materials to analyze the problem and gather 

requirements. As a result of the meta-analysis, we 

identified the existing problems in the domain of web 

testing, and we explored the proposed solutions to 

this problem, which then lead to the design of the 

solution using the keyword-driven approach. 

Design a solution: Following the analysis of the 

problem and requirements, we designed a plan to 

implement the solution. Based upon the knowledge 

that we acquired through Meta-Analysis, we propose 

a solution, which can be adopted in existing 

automated testing tools. The basic idea of this 

design is to combine manual and automated testing 

where human testers, who are going to test the web 

pages using this approach, need to be present even 

when an automated test is executed. It means the 

tester should check the progress of the automated 

test. For that, the proposed solution should ask for 

confirmation from testers similar to when manual 

testing is performed, but here simultaneously with 

automated testing.  

The outline of the solution design consists of 

several core activities. They are as follows: 

1. Starting of the testing process 

2. Initial steps of keyword-driven testing: script 

conversion 

2.1. Manual confirmation 

2.2. Automated confirmation 

3. Report generation according to both result 

Starting of the testing process refers to the initial 

tasks that should be performed during the keyword-

driven testing. For example, before the test is begun, 

testers should create a test script. The initial step of 

keyword-driven testing is the script conversion 

process. It means script language needs to translate 

the test activity sequence. Then, we come to the 

most crucial part of the research. During the test 

execution, the web page should be manually and 

automatically checked and confirm. Finally, the 

result of the tested scenario should be written into a 

report.  

Develop the solution: When we analyzed the 

capabilities of implementing the solution, we 

identified that the java runtime environment to run 

selenium has full capabilities to implement our 

solution. To implement the proposed solution, we 

use the empirical method. The proposed solution is 

to combine the two main testing approaches. 

Therefore the development of the solution focus on 

implementing the activities described previously 

while the existing testing tools deal with the 

automated testing activities. After reviewing the 

current literature on the field, we selected the 

selenium testing tool to implement our tool. 

Selenium is a free and open-source testing tool [15], 

[16]. So, it does not impose a cost to acquire the 

source and enables the implementation of the 

proposed solution as a free and open-source tool. 

More importantly, being an open-source tool, 

selenium helps the implementation of the proposed 

hybrid approach on top of it. Since this tool is 

developed using Java technologies, the activities of 

the proposed solution are developed using Java 

programming language and integrated with the 

selenium tool. 

Evaluation and Validation: We have decided to 

validate and evaluate the approach by using the tool 

that we produced. We accomplish that task by 

testing the web applications using our tool. We 

selected few test scenarios of some web 

applications to test the tool based on different types 

of operations that frequently occur in them. The 

requirements of those test scenarios are known. The 



Hybrid Model for Web Application Testing 

Volume-6, Issue I, June-2021 Rajarata University Journal 

© RUJ 2021, All Rights Reserved  Page 59 Madurapperuma et al. 

selected web applications include a management 

information system, a web search engine and 

dynamic websites. Following are the list of websites 

and web applications that we used for the 

evaluation: 

1. Management Information System of Faculty of 

Science, University of Ruhuna 

(http://paravi.ruh.ac.lk/fosmis/)  

2. Google search engine (https://www.google.lk/) 

3. University of Ruhuna web site 

(http://www.ruh.ac.lk/) 

4. Faculty of Science web site 

(http://www.sci.ruh.ac.lk/) 

Requirements of the above web applications are 

known. So we can perform the test cases on them 

and validate the results with the actual requirements 

of those websites. Using this approach, we evaluate 

and validate our solution. 

We did the implementation of our research in two 

iterations. In the first iteration, we implemented the 

tool without the report generation part. Then, we 

identified the pitfalls of that millstone. Then, we 

analyzed the problems and started the next iteration. 

While addressing those identified pitfalls, we also 

developed the report generating part in the second 

iteration. 

3. Results and Discussion 

As a result of our research, we have introduced a 

keyword-driven testing technique. This technique 

has both manual and automated testing features. 

Figure 2 shows the workflow of the proposed 

method. In the figure, we can see the web 

applications are checked in two stages (see 5, 5.1, 

5.2). One is automated and the other is manual. 

Therefore, in this approach, we can identify the 

errors of the test scripts. Because of this approach, 

the result of automated testing is checked manually.  

The activities that need to be performed in this 

approach are listed below: 

1. Start of the testing process 

2. Program reads the script and takes activities 

one by one 

3. Program converts it into javascript 

4. Then the program runs those javascript on the 

selenium server 

5. Program check for success condition 

5.1. If it fails, then ask the tester to confirm, 

and the program will write the error report 

5.2. If it passes, then ask the tester to confirm, 

and then the program will check for the 

next testing activity 

6.  If there is a conflict between automated results 

and manual confirmation, then report it and 

break the test. 

7. Take the next activity and repeat from '2' with 

the until the last testing activity 

8.  Program writes 'pass' details to buffer 

9.  Program writes 'fail' details to buffer 

10. Program writes details of the buffer in to report 

To demonstrate these activities, we developed a 

tool. The activities that perform by the tool and tester 

can map with the above workflow as below. 

Activity 1 – Start of the testing process: This 

belongs to a set of initial activities. The tester should 

initiate the automated testing by creating a test 

script. Then tester should start the proposed tool 

and select the test script (you can choose a new test 

script by file-> new test). The following three 

activities belong to the automation tool, which 

performs those activities automatically.  

 

Figure 2: The Workflow Diagram of the Proposed 

Method 

Activity 2 – Read the script and take activities 

one by one: According to Milad's and the team [17], 

the test script can be considered as the data source 

of automated testing. Test scripts consist of a 

sequence of activities that need to be performed by 

an automation tool during automated testing. What 

test tools do is they get those activities one by one 

and run it. The tool automatically fetches the testing 

activities one by one. 

Activity 3 – Convert test script into javascript: 

This activity is also done by the tool. Each activity in 



Hybrid Model for Web Application Testing 

Volume-6, Issue I, June-2021 Rajarata University Journal 

© RUJ 2021, All Rights Reserved  Page 60 Madurapperuma et al. 

the test script that is written using keywords is 

converted to javascript and pass to the next activity. 

Activity 4 – Run the javascript on the selenium 

server: It is in this place where the testing activities 

actually started to be performed. After running one 

activity, the tester can see the result in his/her eyes 

(see Figure 3: open Browser Firefox 

http://paravi.ruh.ac.lk/fosmis/).  

Activity 5 – Check for success condition: After 

the previous activity, the tool automatically checks 

the 'pass' or 'fail' condition. In most of the case, the 

pass condition is the ability to move to the next 

activity. For example, the pass condition of the 

second activity of Figure 3 is "there should be an 

HTML element (text box) with the value of its name 

attribute as 'uname.'" If there is no HTML element 

(text box) in the resulting page, the tool considers it 

a failed activity.  

Activity 5.1 and 5.2 – Manual checking: As there 

can be errors in test scripts, the tool asks the tester 

to confirm the results using a yes/no popup window. 

So the tester will select if he/she is confident about 

the correctness of test scripts. Otherwise, the tester 

should check it manually.  

Activity 6 – Conflict between automated results 

and manual confirmation: If there is a conflict 

between the automated and manual testing results, 

the tool will stop the execution and report that 

conflict of manual and automated test results. Here, 

the tester needs to check the test script for errors. 

Activity 7 – Checking for the next activity: The 

tool fetches each activity one by one until the last 

activity.  

Activity 8, 9, and 10 – Writing 'pass' or 'fail' 

details: If one of the activities in the test script fails or 

all the activities are passed in both manual and 

automate results, then the tool writes the passed or 

failed details to buffer before it writes to report.  

Then the tool automatically writes the passed or 

failed result to PDF (Portable Document Format) file. 

 

Figure 3: Sample Test Script 

When using this tool to test their web products, 

people need to create test scripts. These scripts 

should save with ".Dtest" extension. The scripting 

language consists of only eight keywords. These 

keywords are selected to support most of the actions 

that occur when testing a web application. In the 

frontend web application, all common activities 

involve with a web browser and the html elements in 

a particular web page. Combining these keywords, 

one can accommodate most of the test scenarios. 

Usage and the details of the keywords are given in 

Table 1. 

Table 1: The Keywords of the Proposed Method 

Keyword Usage Arguments and details 

Confirm Get user 
confirmation 
after a given 
number of  
activities 

Takes one integer 
argument. Informs the tool 
the activities where the 
program need to get the 
manual confirmation. 

Example: confirm 2 

OpenBro
wser 

Open browser 
with given URI 

openBrowser 
<URI> 

Takes one string 
argument. Informs the tool 
to open the browser with a 
given URL. 

Example:  openBrowser 
http://paravi.ruh.ac.lk/fosmis/ 

Type Enter a given 
value to a 
given target 
element 

Takes three arguments: 
the first argument gives a 
text value, followed by a 
supportive keywords and 
the value of either the 
name or xpath of the 
element. Indicates that the 
value given by first 
argument should be set to 
the element specified by 
the latter arguments.  

Example, type sc8097 
name uname 

Name Name of the 
target element 

Takes one string 
argument: a string value to 
indicate the name of a 
target element.  A 
supportive keyword that 
does not perform any 
activity, if used alone.  

Xpath Xpath of the 
target element 

A supportive keyword 
similar to name. Takes one 
string argument to indicate 
the xpath of a target 
element. ("XPath uses 
target expressions to 
select nodes or node-sets 
in an XML document" [18]) 

Click Click the 
given element 

Takes two arguments that 
specify the target element: 
either of the supportive 
keywords name or xpath 
followed by a string value 
to give name or xpath of 
the element.  

Example: click name 
searchButton 

Submit Submit the 
form by 
clicking the 
given element 

Takes two arguments that 
specify the target element: 
either of the supportive 
keywords name or xpath 
followed by a string value 
to give name or xpath of 
the element.  

Example: submit name 
submitElement 

 



Hybrid Model for Web Application Testing 

Volume-6, Issue I, June-2021 Rajarata University Journal 

© RUJ 2021, All Rights Reserved  Page 61 Madurapperuma et al. 

The reason for getting wrong results in 

automated testing is the complexity of the test 

automation process [3], [5], [19]. Due to this 

complexity, it is highly probable that testers make 

mistakes. Scripting languages like javascript are 

hard to understand to inexperienced persons and 

non-programmers. As a solution to this, we 

proposed the above keyword-driven technique. It is 

easy to understand, and no need to have deep 

knowledge of scripting. The primary issue in test 

automation is debugging. If there are any errors in 

the test script, it may cause severe consequences 

[7]. In our approach, a test case is a sequence of 

activities. We ask from tester to confirm whether the 

test case is successful or not. Both automated the 

result and manual confirmation should match. 

Otherwise, it will break the test case and report the 

situation so that the above problem can be solved. 

Consider a scenario where a short-term project has 

many redundant components. It would be more 

beneficial if manual testing is used [4], [5]. It is better 

to use automated testing to test redundant 

components [4], [5]. Because the proposed scripting 

language is elementary, we can create test scripts 

easily and can get both manual and automated 

testing features to test the project. 

4. Validation and Evaluation 

To validate our approach, we performed some 

test cases on four websites (with known 

requirements) using our tool. The test scenarios that 

correspond to those websites are as follows: 

 Logging and logout of Management 

Information System web site of Faculty of 

Science, University of Ruhuna 

 Functional workability of the search button of 

Google search engine 

 The search facility of the University of Ruhuna 

website 

 The correctness of link "Learning Management 

System (LMS)" of the University of Ruhuna - 

Faculty of Science, website. 

We have recorded the following factors of each 

testing: 

 Time for  testing: Time that the tool took for a 

test run given test script 

 Accuracy: To measure the accuracy, we used a 

marking system. That is, each activity that 

executes correctly was assigned with one (1) 

mark, and for each activity that runs wrongly, it 

was assigned with a minus one (-1) mark. 

Test 1: Login and logout of Management 

Information System web site of Faculty of 

Science, University of Ruhuna 

Following are the requirements (sequence of 

activities that users should be able to do) to login to 

the Management Information System website of the 

Faculty of Science, University of Ruhuna 

(http://paravi.ruh.ac.lk/fosmis/). 

 The user should be able to open the browser 

with the URL of http://paravi.ruh.ac.lk/fosmis/ 

 The user should be able to fill the user name (for 

example, sc7987) in the textbox that the value of 

uname in the name attribute. 

 The user should be able to fill the password (for 

example, xxxxxxx) in the textbox that the value of 

upwd in the name attribute. 

 The user should be able to click the button that 

xpath value is  

 //*[@id="a"]/table/tbody/tr[3]/td[2]/table/tbody/tr[4]

/td/input [1] 

Figure 4 shows the test script that belongs to 

evaluate this site. The tool assumes the correctness 

of each activity by the capability of doing the next 

activity. For example, after the execution of 

"openBrowserFirefox.” 

http://paravi.ruh.ac.lk/fosmis/tool" activity, if it is 

successfully completed, there should be a text field 

to fill user name. 

 

Figure 4: Test script for test FOSMIS (Test 1) 

Test Results are as follows: 

Number of activities (n)  = 5 

Time taken to test (t)  = 35 seconds 

Average time per activity (T) = t/n = 35/5  

= 7 second/activity 

Accuracy = 5 (5 out of 5 activities correctly)  

In order to demonstrate what happens when we 

make a mistake in a test script, we change the test 

script incorrectly and follow the same test. Then, we 

are able to detect the error of the test script. 

The values of above parameters using basic 

selenium tool are: 

Time taken to test (t) = 29 seconds 

Average time per activity (T) = 29/5  

= 5.8 second/activity 

Accuracy = 5 (5 out of 5 activities correctly done)  

http://paravi.ruh.ac.lk/fosmis/


Hybrid Model for Web Application Testing 

Volume-6, Issue I, June-2021 Rajarata University Journal 

© RUJ 2021, All Rights Reserved  Page 62 Madurapperuma et al. 

In order to demonstrate a scenario when there is 

a mistake in a test script, we change the test script 

incorrectly and follow the same test. But here, the 

tool reports it as a bug of the website.  

 

 

 

 

 

Figure 5: The summary of the results of Test 1. 

The value of the above parameters using the 

manual testing technique is: 

Time goes to test = 342 seconds (Here, nearly 

250 seconds is taken to create the report). 

Average time per activity = 342/5 = 68.4 

second/activity (T) 

Accuracy = 5 (5 out of 5 activities correctly done) 

In Figure 5, these results of Test 1 are shown as 

graphs. 

We did the same procedure for the other three 

scenarios as well and obtain the similar results. Due 

to time restrictions, we only evaluated the new 

approach for short test scenarios. In this research, 

we did not test the proposed solution for extended 

test scenarios. In industry, there can be test cases 

that might be very long and need to be executed 

regularly. Although we received 100% accuracy, in 

industry, actual scenarios might get lesser accuracy 

due to the complexity of the test cases.  

5. Conclusion 

The main goal of this research study is to 

combine manual and automated testing together to 

overcome the existing problems in software testing 

in short-term web projects with highly redundant 

tasks. The manual testing gives more short-term 

benefits, while automated testing gives more long-

term benefits. As mentioned above, we can gain 

several benefits from the proposed hybrid approach. 

As we check twice (both manually and 

automatically), we can achieve more accuracy in this 

approach. The causes for delays in this tool are user 

input delay (as the tool waits for user confirmation) 

and delays in converting test scripts to runnable test 

commands. In this approach, it is easy to identify the 

errors in test scripts. Here we avoid the use of any 

commercial tool, and also, the test engineers do not 

require to have additional skills. Therefore, the total 

cost with the time will be similar to the manual 

testing graph in Figure 1. More importantly, since we 

reduced the testing time and the proposed method 

will save the cost than the manual testing. The 

keyword-driven testing technique is one of the 

leading modern testing techniques that can reduce 

the complexity of the test automation process. As 

this approach is based on keywords, it is easier to 

write and understand the scripts than other scripting 

languages. Using this tool would be more beneficial 

when the testing team consists of inexperienced 

testers as they tend to make more mistakes as well. 

It is also easy to get familiar with this tool. We have 

implemented the tool based on the selenium test 

tool. It is one of the leading web test automation 

tools that are freely available. We have planned to 

continue this research to implement a tool combining 

MATT without depending on other testing tools. 

Then, we can increase the neutrality of the proposed 

keyword-based language to support the web testing 

industry as well as customers of the web 

development industry to test their web products. 

 

  



Hybrid Model for Web Application Testing 

Volume-6, Issue I, June-2021 Rajarata University Journal 

© RUJ 2021, All Rights Reserved  Page 63 Madurapperuma et al. 

References  

1. Jain A, Sharma S. an Efficient Keyword Driven 

Test Automation Framework for Web 

Applications. International Journal of 

Engineering Science & Advanced Technology. 

2012; (3):600–4. 

2. Ranstrom R. Automated Web Software Testing 

with Selenium [Internet]. Department of 

Computer Science and Engineering, University 

of Notre Dame, Notre Dame; 2010. Available 

from: 

https://www3.nd.edu/~veoc/resources/Papers/S

eleniamPoster.pdf (Accessed 06 Jun 2021) 

3. Chmurciak D. Automation of regression testing 

of web applications. Masaryk University, Czech 

Republic; 2013.  

4. Zalavadia S. When to Use Manual Testing vs. 

Automated Testing [Internet]. 2015. Available 

from: https://dzone.com/articles/when-use-

manual-testing-vs (Accessed 06 Jun 2021) 

5. Hoback F, Jouda A. Automated, deterministic 

testing versus stochastic testing using 

Quickcheck. Master’s Thesis. KTH Royal 

Institute of Technology, Stockholm, Sweden; 

2007.  

6. Hayes LG. The Automated Testing Handbook. 

Software Testing Institute; 2004. 182 p.  

7. Exforsys. Automated Testing Advantages, 

Disadvantages and Guidelines. 2005. [Internet] 

http://www.exforsys.com/tutorials/testing/autom

ated-testing-advantages-disadvantages-and-

guidelines.html (Accessed 06 Jun 2021) 

8. Maurya VN, Kumar R. Analytical Study on 

Manual vs. Automated Testing Using with 

Simplistic Cost Model. ViXra 2012; 2(1):23–35. 

9. SmartBear Software. Your Guide to Keyword-

Driven Testing, A White paper. Test Complete. 

2014. [Internet] 

https://smartbear.com/resources/white-

papers/your-guide-to-keyword-driven-testing/ 

(Accessed 06 Jun 2021) 

10. SmartBear Software. Uniting Your Automated 

and Manual Test Efforts, A White Paper. Test 

Complete. 2010. [Internet] 

https://static1.smartbear.co/support/media/reso

urces/sp/uniting-automated-and-manual-

tests.pdf (Accessed 06 Jun 2021) 

11. Xie T, Tillmann N, de Halleux J, Schulte W. 

Future of developer testing. In: Proceedings of 

the FSE/SDP workshop on Future of software 

engineering research - FoSER ’10. New York, 

New York, USA: ACM Press; 2010. p. 415.  

12. Xie T, de Halleux J, Tillmann N, Schulte W. 

Teaching and training developer-testing 

techniques and tool support. In: Proceedings of 

the ACM international conference companion 

on Object oriented programming systems 

languages and applications companion - 

SPLASH ’10. New York, New York, USA: ACM 

Press; 2010. p. 175.  

13. Mullarkey MT, Hevner AR. An elaborated action 

design research process model. Ågerfalk P, 

editor. European Journal of Information 

Systems. 2019 Jan 2; 28(1):6–20. Available 

from: 

https://doi.org/10.1080/0960085X.2018.145181

1 

14. Gurevitch J, Koricheva J, Nakagawa S, Stewart 

G. Meta-analysis and the science of research 

synthesis. Nature. 2018 Mar 8;555(7695):175–

82. DOI:10.1038/nature25753 

15. Holmes A, Kellogg M. Automating Functional 

Tests Using Selenium. In: AGILE 2006 

(AGILE’06). IEEE; 2006. p. 270–5. DOI: 

10.1109/AGILE.2006.19 

16. Kaur H, Gupta G. Comparative Study of 

Automated Testing Tools: Selenium, Quick Test 

Professional and Testcomplete. International 

Journal of Engineering Research and 

Applications. 2013; 3(5):1739–43.  

17. Hanna M, El-Haggar N, Sami M. A Review of 

Scripting Techniques Used in Automated 

Software Testing. International Journal of 

Advanced Computer Science and Applications. 

2014; 5(1):194–202.  

18. W3School. http://www.w3schools.com/ , 

(Accessed 06 Jun 2021)  

19. Zambelich K. Totally Data-Driven Automated 

Testing, A white paper. 1998; 17. Available 

from: 

http://www.oio.de/public/softwaretest/Totally-

Data-Driven-Automated-Testing.pdf 

https://doi.org/10.1080/0960085X.2018.1451811
https://doi.org/10.1080/0960085X.2018.1451811
http://www.oio.de/public/softwaretest/Totally-Data-Driven-Automated-Testing.pdf
http://www.oio.de/public/softwaretest/Totally-Data-Driven-Automated-Testing.pdf

