An Application to Predict the Risk Level of Chronic Kidney Disease

Show simple item record

dc.contributor.author Vajiramali, G.H.Pamoda
dc.contributor.author Premachandra, Kaushalya
dc.date.accessioned 2020-01-16T10:23:15Z
dc.date.available 2020-01-16T10:23:15Z
dc.date.issued 2019
dc.identifier.citation RIRC - 2019 , Rajarata International Research Conference, Faculty of Applied Sciences en_US
dc.identifier.issn 2235-9710
dc.identifier.uri http://repository.rjt.ac.lk/handle/123456789/2572
dc.language.iso en en_US
dc.publisher Rajarata University of Sri Lanka, Faculty of Applied Sciences en_US
dc.subject Machine Learning en_US
dc.subject Chronic kidney disease en_US
dc.subject Disease Prediction en_US
dc.subject Support Vector machine en_US
dc.subject Two Class Logistic Regression en_US
dc.title An Application to Predict the Risk Level of Chronic Kidney Disease en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search RUSL-IR


Browse

My Account